1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
use crate::{
    exceptions::PyTypeError,
    ffi,
    pyclass::boolean_struct::False,
    types::{PyDict, PyString, PyTuple},
    FromPyObject, PyAny, PyClass, PyErr, PyRef, PyRefMut, PyResult, Python,
};

/// A trait which is used to help PyO3 macros extract function arguments.
///
/// `#[pyclass]` structs need to extract as `PyRef<T>` and `PyRefMut<T>`
/// wrappers rather than extracting `&T` and `&mut T` directly. The `Holder` type is used
/// to hold these temporary wrappers - the way the macro is constructed, these wrappers
/// will be dropped as soon as the pyfunction call ends.
///
/// There exists a trivial blanket implementation for `T: FromPyObject` with `Holder = ()`.
pub trait PyFunctionArgument<'a, 'py>: Sized + 'a {
    type Holder: FunctionArgumentHolder;
    fn extract(obj: &'py PyAny, holder: &'a mut Self::Holder) -> PyResult<Self>;
}

impl<'a, 'py, T> PyFunctionArgument<'a, 'py> for T
where
    T: FromPyObject<'py> + 'a,
{
    type Holder = ();

    #[inline]
    fn extract(obj: &'py PyAny, _: &'a mut ()) -> PyResult<Self> {
        obj.extract()
    }
}

/// Trait for types which can be a function argument holder - they should
/// to be able to const-initialize to an empty value.
pub trait FunctionArgumentHolder: Sized {
    const INIT: Self;
}

impl FunctionArgumentHolder for () {
    const INIT: Self = ();
}

impl<T> FunctionArgumentHolder for Option<T> {
    const INIT: Self = None;
}

#[inline]
pub fn extract_pyclass_ref<'a, 'py: 'a, T: PyClass>(
    obj: &'py PyAny,
    holder: &'a mut Option<PyRef<'py, T>>,
) -> PyResult<&'a T> {
    #[cfg(not(option_insert))]
    {
        *holder = Some(obj.extract()?);
        return Ok(holder.as_deref().unwrap());
    }

    #[cfg(option_insert)]
    Ok(&*holder.insert(obj.extract()?))
}

#[inline]
pub fn extract_pyclass_ref_mut<'a, 'py: 'a, T: PyClass<Frozen = False>>(
    obj: &'py PyAny,
    holder: &'a mut Option<PyRefMut<'py, T>>,
) -> PyResult<&'a mut T> {
    #[cfg(not(option_insert))]
    {
        *holder = Some(obj.extract()?);
        return Ok(holder.as_deref_mut().unwrap());
    }

    #[cfg(option_insert)]
    Ok(&mut *holder.insert(obj.extract()?))
}

/// The standard implementation of how PyO3 extracts a `#[pyfunction]` or `#[pymethod]` function argument.
#[doc(hidden)]
pub fn extract_argument<'a, 'py, T>(
    obj: &'py PyAny,
    holder: &'a mut T::Holder,
    arg_name: &str,
) -> PyResult<T>
where
    T: PyFunctionArgument<'a, 'py>,
{
    match PyFunctionArgument::extract(obj, holder) {
        Ok(value) => Ok(value),
        Err(e) => Err(argument_extraction_error(obj.py(), arg_name, e)),
    }
}

/// Alternative to [`extract_argument`] used for `Option<T>` arguments. This is necessary because Option<&T>
/// does not implement `PyFunctionArgument` for `T: PyClass`.
#[doc(hidden)]
pub fn extract_optional_argument<'a, 'py, T>(
    obj: Option<&'py PyAny>,
    holder: &'a mut T::Holder,
    arg_name: &str,
    default: fn() -> Option<T>,
) -> PyResult<Option<T>>
where
    T: PyFunctionArgument<'a, 'py>,
{
    match obj {
        Some(obj) => {
            if obj.is_none() {
                // Explicit `None` will result in None being used as the function argument
                Ok(None)
            } else {
                extract_argument(obj, holder, arg_name).map(Some)
            }
        }
        _ => Ok(default()),
    }
}

/// Alternative to [`extract_argument`] used when the argument has a default value provided by an annotation.
#[doc(hidden)]
pub fn extract_argument_with_default<'a, 'py, T>(
    obj: Option<&'py PyAny>,
    holder: &'a mut T::Holder,
    arg_name: &str,
    default: fn() -> T,
) -> PyResult<T>
where
    T: PyFunctionArgument<'a, 'py>,
{
    match obj {
        Some(obj) => extract_argument(obj, holder, arg_name),
        None => Ok(default()),
    }
}

/// Alternative to [`extract_argument`] used when the argument has a `#[pyo3(from_py_with)]` annotation.
#[doc(hidden)]
pub fn from_py_with<'py, T>(
    obj: &'py PyAny,
    arg_name: &str,
    extractor: fn(&'py PyAny) -> PyResult<T>,
) -> PyResult<T> {
    match extractor(obj) {
        Ok(value) => Ok(value),
        Err(e) => Err(argument_extraction_error(obj.py(), arg_name, e)),
    }
}

/// Alternative to [`extract_argument`] used when the argument has a `#[pyo3(from_py_with)]` annotation and also a default value.
#[doc(hidden)]
pub fn from_py_with_with_default<'py, T>(
    obj: Option<&'py PyAny>,
    arg_name: &str,
    extractor: fn(&'py PyAny) -> PyResult<T>,
    default: fn() -> T,
) -> PyResult<T> {
    match obj {
        Some(obj) => from_py_with(obj, arg_name, extractor),
        None => Ok(default()),
    }
}

/// Adds the argument name to the error message of an error which occurred during argument extraction.
///
/// Only modifies TypeError. (Cannot guarantee all exceptions have constructors from
/// single string.)
#[doc(hidden)]
#[cold]
pub fn argument_extraction_error(py: Python<'_>, arg_name: &str, error: PyErr) -> PyErr {
    if error.get_type(py).is(py.get_type::<PyTypeError>()) {
        let remapped_error =
            PyTypeError::new_err(format!("argument '{}': {}", arg_name, error.value(py)));
        remapped_error.set_cause(py, error.cause(py));
        remapped_error
    } else {
        error
    }
}

/// Unwraps the Option<&PyAny> produced by the FunctionDescription `extract_arguments_` methods.
/// They check if required methods are all provided.
///
/// # Safety
/// `argument` must not be `None`
#[doc(hidden)]
#[inline]
pub unsafe fn unwrap_required_argument(argument: Option<&PyAny>) -> &PyAny {
    match argument {
        Some(value) => value,
        #[cfg(debug_assertions)]
        None => unreachable!("required method argument was not extracted"),
        #[cfg(not(debug_assertions))]
        None => std::hint::unreachable_unchecked(),
    }
}

pub struct KeywordOnlyParameterDescription {
    pub name: &'static str,
    pub required: bool,
}

/// Function argument specification for a `#[pyfunction]` or `#[pymethod]`.
pub struct FunctionDescription {
    pub cls_name: Option<&'static str>,
    pub func_name: &'static str,
    pub positional_parameter_names: &'static [&'static str],
    pub positional_only_parameters: usize,
    pub required_positional_parameters: usize,
    pub keyword_only_parameters: &'static [KeywordOnlyParameterDescription],
}

impl FunctionDescription {
    fn full_name(&self) -> String {
        if let Some(cls_name) = self.cls_name {
            format!("{}.{}()", cls_name, self.func_name)
        } else {
            format!("{}()", self.func_name)
        }
    }

    /// Equivalent of `extract_arguments_tuple_dict` which uses the Python C-API "fastcall" convention.
    ///
    /// # Safety
    /// - `args` must be a pointer to a C-style array of valid `ffi::PyObject` pointers, or NULL.
    /// - `kwnames` must be a pointer to a PyTuple, or NULL.
    /// - `nargs + kwnames.len()` is the total length of the `args` array.
    #[cfg(not(Py_LIMITED_API))]
    pub unsafe fn extract_arguments_fastcall<'py, V, K>(
        &self,
        py: Python<'py>,
        args: *const *mut ffi::PyObject,
        nargs: ffi::Py_ssize_t,
        kwnames: *mut ffi::PyObject,
        output: &mut [Option<&'py PyAny>],
    ) -> PyResult<(V::Varargs, K::Varkeywords)>
    where
        V: VarargsHandler<'py>,
        K: VarkeywordsHandler<'py>,
    {
        let num_positional_parameters = self.positional_parameter_names.len();

        debug_assert!(nargs >= 0);
        debug_assert!(self.positional_only_parameters <= num_positional_parameters);
        debug_assert!(self.required_positional_parameters <= num_positional_parameters);
        debug_assert_eq!(
            output.len(),
            num_positional_parameters + self.keyword_only_parameters.len()
        );

        // Handle positional arguments
        // Safety: Option<&PyAny> has the same memory layout as `*mut ffi::PyObject`
        let args: *const Option<&PyAny> = args.cast();
        let positional_args_provided = nargs as usize;
        let remaining_positional_args = if args.is_null() {
            debug_assert_eq!(positional_args_provided, 0);
            &[]
        } else {
            // Can consume at most the number of positional parameters in the function definition,
            // the rest are varargs.
            let positional_args_to_consume =
                num_positional_parameters.min(positional_args_provided);
            let (positional_parameters, remaining) =
                std::slice::from_raw_parts(args, positional_args_provided)
                    .split_at(positional_args_to_consume);
            output[..positional_args_to_consume].copy_from_slice(positional_parameters);
            remaining
        };
        let varargs = V::handle_varargs_fastcall(py, remaining_positional_args, self)?;

        // Handle keyword arguments
        let mut varkeywords = K::Varkeywords::default();
        if let Some(kwnames) = py.from_borrowed_ptr_or_opt::<PyTuple>(kwnames) {
            // Safety: &PyAny has the same memory layout as `*mut ffi::PyObject`
            let kwargs =
                ::std::slice::from_raw_parts((args as *const &PyAny).offset(nargs), kwnames.len());

            self.handle_kwargs::<K, _>(
                kwnames.iter().zip(kwargs.iter().copied()),
                &mut varkeywords,
                num_positional_parameters,
                output,
            )?
        }

        // Once all inputs have been processed, check that all required arguments have been provided.

        self.ensure_no_missing_required_positional_arguments(output, positional_args_provided)?;
        self.ensure_no_missing_required_keyword_arguments(output)?;

        Ok((varargs, varkeywords))
    }

    /// Extracts the `args` and `kwargs` provided into `output`, according to this function
    /// definition.
    ///
    /// `output` must have the same length as this function has positional and keyword-only
    /// parameters (as per the `positional_parameter_names` and `keyword_only_parameters`
    /// respectively).
    ///
    /// Unexpected, duplicate or invalid arguments will cause this function to return `TypeError`.
    ///
    /// # Safety
    /// - `args` must be a pointer to a PyTuple.
    /// - `kwargs` must be a pointer to a PyDict, or NULL.
    pub unsafe fn extract_arguments_tuple_dict<'py, V, K>(
        &self,
        py: Python<'py>,
        args: *mut ffi::PyObject,
        kwargs: *mut ffi::PyObject,
        output: &mut [Option<&'py PyAny>],
    ) -> PyResult<(V::Varargs, K::Varkeywords)>
    where
        V: VarargsHandler<'py>,
        K: VarkeywordsHandler<'py>,
    {
        let args = py.from_borrowed_ptr::<PyTuple>(args);
        let kwargs: ::std::option::Option<&PyDict> = py.from_borrowed_ptr_or_opt(kwargs);

        let num_positional_parameters = self.positional_parameter_names.len();

        debug_assert!(self.positional_only_parameters <= num_positional_parameters);
        debug_assert!(self.required_positional_parameters <= num_positional_parameters);
        debug_assert_eq!(
            output.len(),
            num_positional_parameters + self.keyword_only_parameters.len()
        );

        // Copy positional arguments into output
        for (i, arg) in args.iter().take(num_positional_parameters).enumerate() {
            output[i] = Some(arg);
        }

        // If any arguments remain, push them to varargs (if possible) or error
        let varargs = V::handle_varargs_tuple(args, self)?;

        // Handle keyword arguments
        let mut varkeywords = K::Varkeywords::default();
        if let Some(kwargs) = kwargs {
            self.handle_kwargs::<K, _>(kwargs, &mut varkeywords, num_positional_parameters, output)?
        }

        // Once all inputs have been processed, check that all required arguments have been provided.

        self.ensure_no_missing_required_positional_arguments(output, args.len())?;
        self.ensure_no_missing_required_keyword_arguments(output)?;

        Ok((varargs, varkeywords))
    }

    #[inline]
    fn handle_kwargs<'py, K, I>(
        &self,
        kwargs: I,
        varkeywords: &mut K::Varkeywords,
        num_positional_parameters: usize,
        output: &mut [Option<&'py PyAny>],
    ) -> PyResult<()>
    where
        K: VarkeywordsHandler<'py>,
        I: IntoIterator<Item = (&'py PyAny, &'py PyAny)>,
    {
        debug_assert_eq!(
            num_positional_parameters,
            self.positional_parameter_names.len()
        );
        debug_assert_eq!(
            output.len(),
            num_positional_parameters + self.keyword_only_parameters.len()
        );
        let mut positional_only_keyword_arguments = Vec::new();
        for (kwarg_name_py, value) in kwargs {
            // All keyword arguments should be UTF-8 strings, but we'll check, just in case.
            // If it isn't, then it will be handled below as a varkeyword (which may raise an
            // error if this function doesn't accept **kwargs). Rust source is always UTF-8
            // and so all argument names in `#[pyfunction]` signature must be UTF-8.
            if let Ok(kwarg_name) = kwarg_name_py.downcast::<PyString>()?.to_str() {
                // Try to place parameter in keyword only parameters
                if let Some(i) = self.find_keyword_parameter_in_keyword_only(kwarg_name) {
                    if output[i + num_positional_parameters]
                        .replace(value)
                        .is_some()
                    {
                        return Err(self.multiple_values_for_argument(kwarg_name));
                    }
                    continue;
                }

                // Repeat for positional parameters
                if let Some(i) = self.find_keyword_parameter_in_positional(kwarg_name) {
                    if i < self.positional_only_parameters {
                        // If accepting **kwargs, then it's allowed for the name of the
                        // kwarg to conflict with a postional-only argument - the value
                        // will go into **kwargs anyway.
                        if K::handle_varkeyword(varkeywords, kwarg_name_py, value, self).is_err() {
                            positional_only_keyword_arguments.push(kwarg_name);
                        }
                    } else if output[i].replace(value).is_some() {
                        return Err(self.multiple_values_for_argument(kwarg_name));
                    }
                    continue;
                }
            };

            K::handle_varkeyword(varkeywords, kwarg_name_py, value, self)?
        }

        if !positional_only_keyword_arguments.is_empty() {
            return Err(self.positional_only_keyword_arguments(&positional_only_keyword_arguments));
        }

        Ok(())
    }

    #[inline]
    fn find_keyword_parameter_in_positional(&self, kwarg_name: &str) -> Option<usize> {
        self.positional_parameter_names
            .iter()
            .position(|&param_name| param_name == kwarg_name)
    }

    #[inline]
    fn find_keyword_parameter_in_keyword_only(&self, kwarg_name: &str) -> Option<usize> {
        // Compare the keyword name against each parameter in turn. This is exactly the same method
        // which CPython uses to map keyword names. Although it's O(num_parameters), the number of
        // parameters is expected to be small so it's not worth constructing a mapping.
        self.keyword_only_parameters
            .iter()
            .position(|param_desc| param_desc.name == kwarg_name)
    }

    #[inline]
    fn ensure_no_missing_required_positional_arguments(
        &self,
        output: &[Option<&PyAny>],
        positional_args_provided: usize,
    ) -> PyResult<()> {
        if positional_args_provided < self.required_positional_parameters {
            for out in &output[positional_args_provided..self.required_positional_parameters] {
                if out.is_none() {
                    return Err(self.missing_required_positional_arguments(output));
                }
            }
        }
        Ok(())
    }

    #[inline]
    fn ensure_no_missing_required_keyword_arguments(
        &self,
        output: &[Option<&PyAny>],
    ) -> PyResult<()> {
        let keyword_output = &output[self.positional_parameter_names.len()..];
        for (param, out) in self.keyword_only_parameters.iter().zip(keyword_output) {
            if param.required && out.is_none() {
                return Err(self.missing_required_keyword_arguments(keyword_output));
            }
        }
        Ok(())
    }

    #[cold]
    fn too_many_positional_arguments(&self, args_provided: usize) -> PyErr {
        let was = if args_provided == 1 { "was" } else { "were" };
        let msg = if self.required_positional_parameters != self.positional_parameter_names.len() {
            format!(
                "{} takes from {} to {} positional arguments but {} {} given",
                self.full_name(),
                self.required_positional_parameters,
                self.positional_parameter_names.len(),
                args_provided,
                was
            )
        } else {
            format!(
                "{} takes {} positional arguments but {} {} given",
                self.full_name(),
                self.positional_parameter_names.len(),
                args_provided,
                was
            )
        };
        PyTypeError::new_err(msg)
    }

    #[cold]
    fn multiple_values_for_argument(&self, argument: &str) -> PyErr {
        PyTypeError::new_err(format!(
            "{} got multiple values for argument '{}'",
            self.full_name(),
            argument
        ))
    }

    #[cold]
    fn unexpected_keyword_argument(&self, argument: &PyAny) -> PyErr {
        PyTypeError::new_err(format!(
            "{} got an unexpected keyword argument '{}'",
            self.full_name(),
            argument
        ))
    }

    #[cold]
    fn positional_only_keyword_arguments(&self, parameter_names: &[&str]) -> PyErr {
        let mut msg = format!(
            "{} got some positional-only arguments passed as keyword arguments: ",
            self.full_name()
        );
        push_parameter_list(&mut msg, parameter_names);
        PyTypeError::new_err(msg)
    }

    #[cold]
    fn missing_required_arguments(&self, argument_type: &str, parameter_names: &[&str]) -> PyErr {
        let arguments = if parameter_names.len() == 1 {
            "argument"
        } else {
            "arguments"
        };
        let mut msg = format!(
            "{} missing {} required {} {}: ",
            self.full_name(),
            parameter_names.len(),
            argument_type,
            arguments,
        );
        push_parameter_list(&mut msg, parameter_names);
        PyTypeError::new_err(msg)
    }

    #[cold]
    fn missing_required_keyword_arguments(&self, keyword_outputs: &[Option<&PyAny>]) -> PyErr {
        debug_assert_eq!(self.keyword_only_parameters.len(), keyword_outputs.len());

        let missing_keyword_only_arguments: Vec<_> = self
            .keyword_only_parameters
            .iter()
            .zip(keyword_outputs)
            .filter_map(|(keyword_desc, out)| {
                if keyword_desc.required && out.is_none() {
                    Some(keyword_desc.name)
                } else {
                    None
                }
            })
            .collect();

        debug_assert!(!missing_keyword_only_arguments.is_empty());
        self.missing_required_arguments("keyword", &missing_keyword_only_arguments)
    }

    #[cold]
    fn missing_required_positional_arguments(&self, output: &[Option<&PyAny>]) -> PyErr {
        let missing_positional_arguments: Vec<_> = self
            .positional_parameter_names
            .iter()
            .take(self.required_positional_parameters)
            .zip(output)
            .filter_map(|(param, out)| if out.is_none() { Some(*param) } else { None })
            .collect();

        debug_assert!(!missing_positional_arguments.is_empty());
        self.missing_required_arguments("positional", &missing_positional_arguments)
    }
}

/// A trait used to control whether to accept varargs in FunctionDescription::extract_argument_(method) functions.
pub trait VarargsHandler<'py> {
    type Varargs;
    /// Called by `FunctionDescription::extract_arguments_fastcall` with any additional arguments.
    fn handle_varargs_fastcall(
        py: Python<'py>,
        varargs: &[Option<&PyAny>],
        function_description: &FunctionDescription,
    ) -> PyResult<Self::Varargs>;
    /// Called by `FunctionDescription::extract_arguments_tuple_dict` with the original tuple.
    ///
    /// Additional arguments are those in the tuple slice starting from `function_description.positional_parameter_names.len()`.
    fn handle_varargs_tuple(
        args: &'py PyTuple,
        function_description: &FunctionDescription,
    ) -> PyResult<Self::Varargs>;
}

/// Marker struct which indicates varargs are not allowed.
pub struct NoVarargs;

impl<'py> VarargsHandler<'py> for NoVarargs {
    type Varargs = ();

    #[inline]
    fn handle_varargs_fastcall(
        _py: Python<'py>,
        varargs: &[Option<&PyAny>],
        function_description: &FunctionDescription,
    ) -> PyResult<Self::Varargs> {
        let extra_arguments = varargs.len();
        if extra_arguments > 0 {
            return Err(function_description.too_many_positional_arguments(
                function_description.positional_parameter_names.len() + extra_arguments,
            ));
        }
        Ok(())
    }

    #[inline]
    fn handle_varargs_tuple(
        args: &'py PyTuple,
        function_description: &FunctionDescription,
    ) -> PyResult<Self::Varargs> {
        let positional_parameter_count = function_description.positional_parameter_names.len();
        let provided_args_count = args.len();
        if provided_args_count <= positional_parameter_count {
            Ok(())
        } else {
            Err(function_description.too_many_positional_arguments(provided_args_count))
        }
    }
}

/// Marker struct which indicates varargs should be collected into a `PyTuple`.
pub struct TupleVarargs;

impl<'py> VarargsHandler<'py> for TupleVarargs {
    type Varargs = &'py PyTuple;
    #[inline]
    fn handle_varargs_fastcall(
        py: Python<'py>,
        varargs: &[Option<&PyAny>],
        _function_description: &FunctionDescription,
    ) -> PyResult<Self::Varargs> {
        Ok(PyTuple::new(py, varargs))
    }

    #[inline]
    fn handle_varargs_tuple(
        args: &'py PyTuple,
        function_description: &FunctionDescription,
    ) -> PyResult<Self::Varargs> {
        let positional_parameters = function_description.positional_parameter_names.len();
        Ok(args.get_slice(positional_parameters, args.len()))
    }
}

/// A trait used to control whether to accept varkeywords in FunctionDescription::extract_argument_(method) functions.
pub trait VarkeywordsHandler<'py> {
    type Varkeywords: Default;
    fn handle_varkeyword(
        varkeywords: &mut Self::Varkeywords,
        name: &'py PyAny,
        value: &'py PyAny,
        function_description: &FunctionDescription,
    ) -> PyResult<()>;
}

/// Marker struct which indicates unknown keywords are not permitted.
pub struct NoVarkeywords;

impl<'py> VarkeywordsHandler<'py> for NoVarkeywords {
    type Varkeywords = ();
    #[inline]
    fn handle_varkeyword(
        _varkeywords: &mut Self::Varkeywords,
        name: &'py PyAny,
        _value: &'py PyAny,
        function_description: &FunctionDescription,
    ) -> PyResult<()> {
        Err(function_description.unexpected_keyword_argument(name))
    }
}

/// Marker struct which indicates unknown keywords should be collected into a `PyDict`.
pub struct DictVarkeywords;

impl<'py> VarkeywordsHandler<'py> for DictVarkeywords {
    type Varkeywords = Option<&'py PyDict>;
    #[inline]
    fn handle_varkeyword(
        varkeywords: &mut Self::Varkeywords,
        name: &'py PyAny,
        value: &'py PyAny,
        _function_description: &FunctionDescription,
    ) -> PyResult<()> {
        varkeywords
            .get_or_insert_with(|| PyDict::new(name.py()))
            .set_item(name, value)
    }
}

fn push_parameter_list(msg: &mut String, parameter_names: &[&str]) {
    for (i, parameter) in parameter_names.iter().enumerate() {
        if i != 0 {
            if parameter_names.len() > 2 {
                msg.push(',');
            }

            if i == parameter_names.len() - 1 {
                msg.push_str(" and ")
            } else {
                msg.push(' ')
            }
        }

        msg.push('\'');
        msg.push_str(parameter);
        msg.push('\'');
    }
}

#[cfg(test)]
mod tests {
    use crate::{
        types::{IntoPyDict, PyTuple},
        AsPyPointer, PyAny, Python, ToPyObject,
    };

    use super::{push_parameter_list, FunctionDescription, NoVarargs, NoVarkeywords};

    #[test]
    fn unexpected_keyword_argument() {
        let function_description = FunctionDescription {
            cls_name: None,
            func_name: "example",
            positional_parameter_names: &[],
            positional_only_parameters: 0,
            required_positional_parameters: 0,
            keyword_only_parameters: &[],
        };

        Python::with_gil(|py| {
            let err = unsafe {
                function_description
                    .extract_arguments_tuple_dict::<NoVarargs, NoVarkeywords>(
                        py,
                        PyTuple::new(py, Vec::<&PyAny>::new()).as_ptr(),
                        [("foo".to_object(py).into_ref(py), 0u8)]
                            .into_py_dict(py)
                            .as_ptr(),
                        &mut [],
                    )
                    .unwrap_err()
            };
            assert_eq!(
                err.to_string(),
                "TypeError: example() got an unexpected keyword argument 'foo'"
            );
        })
    }

    #[test]
    fn keyword_not_string() {
        let function_description = FunctionDescription {
            cls_name: None,
            func_name: "example",
            positional_parameter_names: &[],
            positional_only_parameters: 0,
            required_positional_parameters: 0,
            keyword_only_parameters: &[],
        };

        Python::with_gil(|py| {
            let err = unsafe {
                function_description
                    .extract_arguments_tuple_dict::<NoVarargs, NoVarkeywords>(
                        py,
                        PyTuple::new(py, Vec::<&PyAny>::new()).as_ptr(),
                        [(1u8.to_object(py).into_ref(py), 1u8)]
                            .into_py_dict(py)
                            .as_ptr(),
                        &mut [],
                    )
                    .unwrap_err()
            };
            assert_eq!(
                err.to_string(),
                "TypeError: 'int' object cannot be converted to 'PyString'"
            );
        })
    }

    #[test]
    fn missing_required_arguments() {
        let function_description = FunctionDescription {
            cls_name: None,
            func_name: "example",
            positional_parameter_names: &["foo", "bar"],
            positional_only_parameters: 0,
            required_positional_parameters: 2,
            keyword_only_parameters: &[],
        };

        Python::with_gil(|py| {
            let mut output = [None, None];
            let err = unsafe {
                function_description.extract_arguments_tuple_dict::<NoVarargs, NoVarkeywords>(
                    py,
                    PyTuple::new(py, Vec::<&PyAny>::new()).as_ptr(),
                    std::ptr::null_mut(),
                    &mut output,
                )
            }
            .unwrap_err();
            assert_eq!(
                err.to_string(),
                "TypeError: example() missing 2 required positional arguments: 'foo' and 'bar'"
            );
        })
    }

    #[test]
    fn push_parameter_list_empty() {
        let mut s = String::new();
        push_parameter_list(&mut s, &[]);
        assert_eq!(&s, "");
    }

    #[test]
    fn push_parameter_list_one() {
        let mut s = String::new();
        push_parameter_list(&mut s, &["a"]);
        assert_eq!(&s, "'a'");
    }

    #[test]
    fn push_parameter_list_two() {
        let mut s = String::new();
        push_parameter_list(&mut s, &["a", "b"]);
        assert_eq!(&s, "'a' and 'b'");
    }

    #[test]
    fn push_parameter_list_three() {
        let mut s = String::new();
        push_parameter_list(&mut s, &["a", "b", "c"]);
        assert_eq!(&s, "'a', 'b', and 'c'");
    }

    #[test]
    fn push_parameter_list_four() {
        let mut s = String::new();
        push_parameter_list(&mut s, &["a", "b", "c", "d"]);
        assert_eq!(&s, "'a', 'b', 'c', and 'd'");
    }
}