1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188
/*!
A DFA that can return spans for matching capturing groups.
This module is the home of a [one-pass DFA](DFA).
This module also contains a [`Builder`] and a [`Config`] for building and
configuring a one-pass DFA.
*/
// A note on naming and credit:
//
// As far as I know, Russ Cox came up with the practical vision and
// implementation of a "one-pass regex engine." He mentions and describes it
// briefly in the third article of his regexp article series:
// https://swtch.com/~rsc/regexp/regexp3.html
//
// Cox's implementation is in RE2, and the implementation below is most
// heavily inspired by RE2's. The key thing they have in common is that
// their transitions are defined over an alphabet of bytes. In contrast,
// Go's regex engine also has a one-pass engine, but its transitions are
// more firmly rooted on Unicode codepoints. The ideas are the same, but the
// implementations are different.
//
// RE2 tends to call this a "one-pass NFA." Here, we call it a "one-pass DFA."
// They're both true in their own ways:
//
// * The "one-pass" criterion is generally a property of the NFA itself. In
// particular, it is said that an NFA is one-pass if, after each byte of input
// during a search, there is at most one "VM thread" remaining to take for the
// next byte of input. That is, there is never any ambiguity as to the path to
// take through the NFA during a search.
//
// * On the other hand, once a one-pass NFA has its representation converted
// to something where a constant number of instructions is used for each byte
// of input, the implementation looks a lot more like a DFA. It's technically
// more powerful than a DFA since it has side effects (storing offsets inside
// of slots activated by a transition), but it is far closer to a DFA than an
// NFA simulation.
//
// Thus, in this crate, we call it a one-pass DFA.
use alloc::{vec, vec::Vec};
use crate::{
dfa::{remapper::Remapper, DEAD},
nfa::thompson::{self, NFA},
util::{
alphabet::ByteClasses,
captures::Captures,
escape::DebugByte,
int::{Usize, U32, U64, U8},
look::{Look, LookSet, UnicodeWordBoundaryError},
primitives::{NonMaxUsize, PatternID, StateID},
search::{Anchored, Input, Match, MatchError, MatchKind, Span},
sparse_set::SparseSet,
},
};
/// The configuration used for building a [one-pass DFA](DFA).
///
/// A one-pass DFA configuration is a simple data object that is typically used
/// with [`Builder::configure`]. It can be cheaply cloned.
///
/// A default configuration can be created either with `Config::new`, or
/// perhaps more conveniently, with [`DFA::config`].
#[derive(Clone, Debug, Default)]
pub struct Config {
match_kind: Option<MatchKind>,
starts_for_each_pattern: Option<bool>,
byte_classes: Option<bool>,
size_limit: Option<Option<usize>>,
}
impl Config {
/// Return a new default one-pass DFA configuration.
pub fn new() -> Config {
Config::default()
}
/// Set the desired match semantics.
///
/// The default is [`MatchKind::LeftmostFirst`], which corresponds to the
/// match semantics of Perl-like regex engines. That is, when multiple
/// patterns would match at the same leftmost position, the pattern that
/// appears first in the concrete syntax is chosen.
///
/// Currently, the only other kind of match semantics supported is
/// [`MatchKind::All`]. This corresponds to "classical DFA" construction
/// where all possible matches are visited.
///
/// When it comes to the one-pass DFA, it is rarer for preference order and
/// "longest match" to actually disagree. Since if they did disagree, then
/// the regex typically isn't one-pass. For example, searching `Samwise`
/// for `Sam|Samwise` will report `Sam` for leftmost-first matching and
/// `Samwise` for "longest match" or "all" matching. However, this regex is
/// not one-pass if taken literally. The equivalent regex, `Sam(?:|wise)`
/// is one-pass and `Sam|Samwise` may be optimized to it.
///
/// The other main difference is that "all" match semantics don't support
/// non-greedy matches. "All" match semantics always try to match as much
/// as possible.
pub fn match_kind(mut self, kind: MatchKind) -> Config {
self.match_kind = Some(kind);
self
}
/// Whether to compile a separate start state for each pattern in the
/// one-pass DFA.
///
/// When enabled, a separate **anchored** start state is added for each
/// pattern in the DFA. When this start state is used, then the DFA will
/// only search for matches for the pattern specified, even if there are
/// other patterns in the DFA.
///
/// The main downside of this option is that it can potentially increase
/// the size of the DFA and/or increase the time it takes to build the DFA.
///
/// You might want to enable this option when you want to both search for
/// anchored matches of any pattern or to search for anchored matches of
/// one particular pattern while using the same DFA. (Otherwise, you would
/// need to compile a new DFA for each pattern.)
///
/// By default this is disabled.
///
/// # Example
///
/// This example shows how to build a multi-regex and then search for
/// matches for a any of the patterns or matches for a specific pattern.
///
/// ```
/// use regex_automata::{
/// dfa::onepass::DFA, Anchored, Input, Match, PatternID,
/// };
///
/// let re = DFA::builder()
/// .configure(DFA::config().starts_for_each_pattern(true))
/// .build_many(&["[a-z]+", "[0-9]+"])?;
/// let (mut cache, mut caps) = (re.create_cache(), re.create_captures());
/// let haystack = "123abc";
/// let input = Input::new(haystack).anchored(Anchored::Yes);
///
/// // A normal multi-pattern search will show pattern 1 matches.
/// re.try_search(&mut cache, &input, &mut caps)?;
/// assert_eq!(Some(Match::must(1, 0..3)), caps.get_match());
///
/// // If we only want to report pattern 0 matches, then we'll get no
/// // match here.
/// let input = input.anchored(Anchored::Pattern(PatternID::must(0)));
/// re.try_search(&mut cache, &input, &mut caps)?;
/// assert_eq!(None, caps.get_match());
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
pub fn starts_for_each_pattern(mut self, yes: bool) -> Config {
self.starts_for_each_pattern = Some(yes);
self
}
/// Whether to attempt to shrink the size of the DFA's alphabet or not.
///
/// This option is enabled by default and should never be disabled unless
/// one is debugging a one-pass DFA.
///
/// When enabled, the DFA will use a map from all possible bytes to their
/// corresponding equivalence class. Each equivalence class represents a
/// set of bytes that does not discriminate between a match and a non-match
/// in the DFA. For example, the pattern `[ab]+` has at least two
/// equivalence classes: a set containing `a` and `b` and a set containing
/// every byte except for `a` and `b`. `a` and `b` are in the same
/// equivalence class because they never discriminate between a match and a
/// non-match.
///
/// The advantage of this map is that the size of the transition table
/// can be reduced drastically from (approximately) `#states * 256 *
/// sizeof(StateID)` to `#states * k * sizeof(StateID)` where `k` is the
/// number of equivalence classes (rounded up to the nearest power of 2).
/// As a result, total space usage can decrease substantially. Moreover,
/// since a smaller alphabet is used, DFA compilation becomes faster as
/// well.
///
/// **WARNING:** This is only useful for debugging DFAs. Disabling this
/// does not yield any speed advantages. Namely, even when this is
/// disabled, a byte class map is still used while searching. The only
/// difference is that every byte will be forced into its own distinct
/// equivalence class. This is useful for debugging the actual generated
/// transitions because it lets one see the transitions defined on actual
/// bytes instead of the equivalence classes.
pub fn byte_classes(mut self, yes: bool) -> Config {
self.byte_classes = Some(yes);
self
}
/// Set a size limit on the total heap used by a one-pass DFA.
///
/// This size limit is expressed in bytes and is applied during
/// construction of a one-pass DFA. If the DFA's heap usage exceeds
/// this configured limit, then construction is stopped and an error is
/// returned.
///
/// The default is no limit.
///
/// # Example
///
/// This example shows a one-pass DFA that fails to build because of
/// a configured size limit. This particular example also serves as a
/// cautionary tale demonstrating just how big DFAs with large Unicode
/// character classes can get.
///
/// ```
/// # if cfg!(miri) { return Ok(()); } // miri takes too long
/// use regex_automata::{dfa::onepass::DFA, Match};
///
/// // 6MB isn't enough!
/// DFA::builder()
/// .configure(DFA::config().size_limit(Some(6_000_000)))
/// .build(r"\w{20}")
/// .unwrap_err();
///
/// // ... but 7MB probably is!
/// // (Note that DFA sizes aren't necessarily stable between releases.)
/// let re = DFA::builder()
/// .configure(DFA::config().size_limit(Some(7_000_000)))
/// .build(r"\w{20}")?;
/// let (mut cache, mut caps) = (re.create_cache(), re.create_captures());
/// let haystack = "A".repeat(20);
/// re.captures(&mut cache, &haystack, &mut caps);
/// assert_eq!(Some(Match::must(0, 0..20)), caps.get_match());
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// While one needs a little more than 3MB to represent `\w{20}`, it
/// turns out that you only need a little more than 4KB to represent
/// `(?-u:\w{20})`. So only use Unicode if you need it!
pub fn size_limit(mut self, limit: Option<usize>) -> Config {
self.size_limit = Some(limit);
self
}
/// Returns the match semantics set in this configuration.
pub fn get_match_kind(&self) -> MatchKind {
self.match_kind.unwrap_or(MatchKind::LeftmostFirst)
}
/// Returns whether this configuration has enabled anchored starting states
/// for every pattern in the DFA.
pub fn get_starts_for_each_pattern(&self) -> bool {
self.starts_for_each_pattern.unwrap_or(false)
}
/// Returns whether this configuration has enabled byte classes or not.
/// This is typically a debugging oriented option, as disabling it confers
/// no speed benefit.
pub fn get_byte_classes(&self) -> bool {
self.byte_classes.unwrap_or(true)
}
/// Returns the DFA size limit of this configuration if one was set.
/// The size limit is total number of bytes on the heap that a DFA is
/// permitted to use. If the DFA exceeds this limit during construction,
/// then construction is stopped and an error is returned.
pub fn get_size_limit(&self) -> Option<usize> {
self.size_limit.unwrap_or(None)
}
/// Overwrite the default configuration such that the options in `o` are
/// always used. If an option in `o` is not set, then the corresponding
/// option in `self` is used. If it's not set in `self` either, then it
/// remains not set.
pub(crate) fn overwrite(&self, o: Config) -> Config {
Config {
match_kind: o.match_kind.or(self.match_kind),
starts_for_each_pattern: o
.starts_for_each_pattern
.or(self.starts_for_each_pattern),
byte_classes: o.byte_classes.or(self.byte_classes),
size_limit: o.size_limit.or(self.size_limit),
}
}
}
/// A builder for a [one-pass DFA](DFA).
///
/// This builder permits configuring options for the syntax of a pattern, the
/// NFA construction and the DFA construction. This builder is different from a
/// general purpose regex builder in that it permits fine grain configuration
/// of the construction process. The trade off for this is complexity, and
/// the possibility of setting a configuration that might not make sense. For
/// example, there are two different UTF-8 modes:
///
/// * [`syntax::Config::utf8`](crate::util::syntax::Config::utf8) controls
/// whether the pattern itself can contain sub-expressions that match invalid
/// UTF-8.
/// * [`thompson::Config::utf8`] controls whether empty matches that split a
/// Unicode codepoint are reported or not.
///
/// Generally speaking, callers will want to either enable all of these or
/// disable all of these.
///
/// # Example
///
/// This example shows how to disable UTF-8 mode in the syntax and the NFA.
/// This is generally what you want for matching on arbitrary bytes.
///
/// ```
/// # if cfg!(miri) { return Ok(()); } // miri takes too long
/// use regex_automata::{
/// dfa::onepass::DFA,
/// nfa::thompson,
/// util::syntax,
/// Match,
/// };
///
/// let re = DFA::builder()
/// .syntax(syntax::Config::new().utf8(false))
/// .thompson(thompson::Config::new().utf8(false))
/// .build(r"foo(?-u:[^b])ar.*")?;
/// let (mut cache, mut caps) = (re.create_cache(), re.create_captures());
///
/// let haystack = b"foo\xFFarzz\xE2\x98\xFF\n";
/// re.captures(&mut cache, haystack, &mut caps);
/// // Notice that `(?-u:[^b])` matches invalid UTF-8,
/// // but the subsequent `.*` does not! Disabling UTF-8
/// // on the syntax permits this.
/// //
/// // N.B. This example does not show the impact of
/// // disabling UTF-8 mode on a one-pass DFA Config,
/// // since that only impacts regexes that can
/// // produce matches of length 0.
/// assert_eq!(Some(Match::must(0, 0..8)), caps.get_match());
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[derive(Clone, Debug)]
pub struct Builder {
config: Config,
#[cfg(feature = "syntax")]
thompson: thompson::Compiler,
}
impl Builder {
/// Create a new one-pass DFA builder with the default configuration.
pub fn new() -> Builder {
Builder {
config: Config::default(),
#[cfg(feature = "syntax")]
thompson: thompson::Compiler::new(),
}
}
/// Build a one-pass DFA from the given pattern.
///
/// If there was a problem parsing or compiling the pattern, then an error
/// is returned.
#[cfg(feature = "syntax")]
pub fn build(&self, pattern: &str) -> Result<DFA, BuildError> {
self.build_many(&[pattern])
}
/// Build a one-pass DFA from the given patterns.
///
/// When matches are returned, the pattern ID corresponds to the index of
/// the pattern in the slice given.
#[cfg(feature = "syntax")]
pub fn build_many<P: AsRef<str>>(
&self,
patterns: &[P],
) -> Result<DFA, BuildError> {
let nfa =
self.thompson.build_many(patterns).map_err(BuildError::nfa)?;
self.build_from_nfa(nfa)
}
/// Build a DFA from the given NFA.
///
/// # Example
///
/// This example shows how to build a DFA if you already have an NFA in
/// hand.
///
/// ```
/// use regex_automata::{dfa::onepass::DFA, nfa::thompson::NFA, Match};
///
/// // This shows how to set non-default options for building an NFA.
/// let nfa = NFA::compiler()
/// .configure(NFA::config().shrink(true))
/// .build(r"[a-z0-9]+")?;
/// let re = DFA::builder().build_from_nfa(nfa)?;
/// let (mut cache, mut caps) = (re.create_cache(), re.create_captures());
/// re.captures(&mut cache, "foo123bar", &mut caps);
/// assert_eq!(Some(Match::must(0, 0..9)), caps.get_match());
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
pub fn build_from_nfa(&self, nfa: NFA) -> Result<DFA, BuildError> {
// Why take ownership if we're just going to pass a reference to the
// NFA to our internal builder? Well, the first thing to note is that
// an NFA uses reference counting internally, so either choice is going
// to be cheap. So there isn't much cost either way.
//
// The real reason is that a one-pass DFA, semantically, shares
// ownership of an NFA. This is unlike other DFAs that don't share
// ownership of an NFA at all, primarily because they want to be
// self-contained in order to support cheap (de)serialization.
//
// But then why pass a '&nfa' below if we want to share ownership?
// Well, it turns out that using a '&NFA' in our internal builder
// separates its lifetime from the DFA we're building, and this turns
// out to make code a bit more composable. e.g., We can iterate over
// things inside the NFA while borrowing the builder as mutable because
// we know the NFA cannot be mutated. So TL;DR --- this weirdness is
// "because borrow checker."
InternalBuilder::new(self.config.clone(), &nfa).build()
}
/// Apply the given one-pass DFA configuration options to this builder.
pub fn configure(&mut self, config: Config) -> &mut Builder {
self.config = self.config.overwrite(config);
self
}
/// Set the syntax configuration for this builder using
/// [`syntax::Config`](crate::util::syntax::Config).
///
/// This permits setting things like case insensitivity, Unicode and multi
/// line mode.
///
/// These settings only apply when constructing a one-pass DFA directly
/// from a pattern.
#[cfg(feature = "syntax")]
pub fn syntax(
&mut self,
config: crate::util::syntax::Config,
) -> &mut Builder {
self.thompson.syntax(config);
self
}
/// Set the Thompson NFA configuration for this builder using
/// [`nfa::thompson::Config`](crate::nfa::thompson::Config).
///
/// This permits setting things like whether additional time should be
/// spent shrinking the size of the NFA.
///
/// These settings only apply when constructing a DFA directly from a
/// pattern.
#[cfg(feature = "syntax")]
pub fn thompson(&mut self, config: thompson::Config) -> &mut Builder {
self.thompson.configure(config);
self
}
}
/// An internal builder for encapsulating the state necessary to build a
/// one-pass DFA. Typical use is just `InternalBuilder::new(..).build()`.
///
/// There is no separate pass for determining whether the NFA is one-pass or
/// not. We just try to build the DFA. If during construction we discover that
/// it is not one-pass, we bail out. This is likely to lead to some undesirable
/// expense in some cases, so it might make sense to try an identify common
/// patterns in the NFA that make it definitively not one-pass. That way, we
/// can avoid ever trying to build a one-pass DFA in the first place. For
/// example, '\w*\s' is not one-pass, and since '\w' is Unicode-aware by
/// default, it's probably not a trivial cost to try and build a one-pass DFA
/// for it and then fail.
///
/// Note that some (immutable) fields are duplicated here. For example, the
/// 'nfa' and 'classes' fields are both in the 'DFA'. They are the same thing,
/// but we duplicate them because it makes composition easier below. Otherwise,
/// since the borrow checker can't see through method calls, the mutable borrow
/// we use to mutate the DFA winds up preventing borrowing from any other part
/// of the DFA, even though we aren't mutating those parts. We only do this
/// because the duplication is cheap.
#[derive(Debug)]
struct InternalBuilder<'a> {
/// The DFA we're building.
dfa: DFA,
/// An unordered collection of NFA state IDs that we haven't yet tried to
/// build into a DFA state yet.
///
/// This collection does not ultimately wind up including every NFA state
/// ID. Instead, each ID represents a "start" state for a sub-graph of the
/// NFA. The set of NFA states we then use to build a DFA state consists
/// of that "start" state and all states reachable from it via epsilon
/// transitions.
uncompiled_nfa_ids: Vec<StateID>,
/// A map from NFA state ID to DFA state ID. This is useful for easily
/// determining whether an NFA state has been used as a "starting" point
/// to build a DFA state yet. If it hasn't, then it is mapped to DEAD,
/// and since DEAD is specially added and never corresponds to any NFA
/// state, it follows that a mapping to DEAD implies the NFA state has
/// no corresponding DFA state yet.
nfa_to_dfa_id: Vec<StateID>,
/// A stack used to traverse the NFA states that make up a single DFA
/// state. Traversal occurs until the stack is empty, and we only push to
/// the stack when the state ID isn't in 'seen'. Actually, even more than
/// that, if we try to push something on to this stack that is already in
/// 'seen', then we bail out on construction completely, since it implies
/// that the NFA is not one-pass.
stack: Vec<(StateID, Epsilons)>,
/// The set of NFA states that we've visited via 'stack'.
seen: SparseSet,
/// Whether a match NFA state has been observed while constructing a
/// one-pass DFA state. Once a match state is seen, assuming we are using
/// leftmost-first match semantics, then we don't add any more transitions
/// to the DFA state we're building.
matched: bool,
/// The config passed to the builder.
///
/// This is duplicated in dfa.config.
config: Config,
/// The NFA we're building a one-pass DFA from.
///
/// This is duplicated in dfa.nfa.
nfa: &'a NFA,
/// The equivalence classes that make up the alphabet for this DFA>
///
/// This is duplicated in dfa.classes.
classes: ByteClasses,
}
impl<'a> InternalBuilder<'a> {
/// Create a new builder with an initial empty DFA.
fn new(config: Config, nfa: &'a NFA) -> InternalBuilder {
let classes = if !config.get_byte_classes() {
// A one-pass DFA will always use the equivalence class map, but
// enabling this option is useful for debugging. Namely, this will
// cause all transitions to be defined over their actual bytes
// instead of an opaque equivalence class identifier. The former is
// much easier to grok as a human.
ByteClasses::singletons()
} else {
nfa.byte_classes().clone()
};
// Normally a DFA alphabet includes the EOI symbol, but we don't need
// that in the one-pass DFA since we handle look-around explicitly
// without encoding it into the DFA. Thus, we don't need to delay
// matches by 1 byte. However, we reuse the space that *would* be used
// by the EOI transition by putting match information there (like which
// pattern matches and which look-around assertions need to hold). So
// this means our real alphabet length is 1 fewer than what the byte
// classes report, since we don't use EOI.
let alphabet_len = classes.alphabet_len().checked_sub(1).unwrap();
let stride2 = classes.stride2();
let dfa = DFA {
config: config.clone(),
nfa: nfa.clone(),
table: vec![],
starts: vec![],
// Since one-pass DFAs have a smaller state ID max than
// StateID::MAX, it follows that StateID::MAX is a valid initial
// value for min_match_id since no state ID can ever be greater
// than it. In the case of a one-pass DFA with no match states, the
// min_match_id will keep this sentinel value.
min_match_id: StateID::MAX,
classes: classes.clone(),
alphabet_len,
stride2,
pateps_offset: alphabet_len,
// OK because PatternID::MAX*2 is guaranteed not to overflow.
explicit_slot_start: nfa.pattern_len().checked_mul(2).unwrap(),
};
InternalBuilder {
dfa,
uncompiled_nfa_ids: vec![],
nfa_to_dfa_id: vec![DEAD; nfa.states().len()],
stack: vec![],
seen: SparseSet::new(nfa.states().len()),
matched: false,
config,
nfa,
classes,
}
}
/// Build the DFA from the NFA given to this builder. If the NFA is not
/// one-pass, then return an error. An error may also be returned if a
/// particular limit is exceeded. (Some limits, like the total heap memory
/// used, are configurable. Others, like the total patterns or slots, are
/// hard-coded based on representational limitations.)
fn build(mut self) -> Result<DFA, BuildError> {
self.nfa.look_set_any().available().map_err(BuildError::word)?;
for look in self.nfa.look_set_any().iter() {
// This is a future incompatibility check where if we add any
// more look-around assertions, then the one-pass DFA either
// needs to reject them (what we do here) or it needs to have its
// Transition representation modified to be capable of storing the
// new assertions.
if look.as_repr() > Look::WordUnicodeNegate.as_repr() {
return Err(BuildError::unsupported_look(look));
}
}
if self.nfa.pattern_len().as_u64() > PatternEpsilons::PATTERN_ID_LIMIT
{
return Err(BuildError::too_many_patterns(
PatternEpsilons::PATTERN_ID_LIMIT,
));
}
if self.nfa.group_info().explicit_slot_len() > Slots::LIMIT {
return Err(BuildError::not_one_pass(
"too many explicit capturing groups (max is 16)",
));
}
assert_eq!(DEAD, self.add_empty_state()?);
// This is where the explicit slots start. We care about this because
// we only need to track explicit slots. The implicit slots---two for
// each pattern---are tracked as part of the search routine itself.
let explicit_slot_start = self.nfa.pattern_len() * 2;
self.add_start_state(None, self.nfa.start_anchored())?;
if self.config.get_starts_for_each_pattern() {
for pid in self.nfa.patterns() {
self.add_start_state(
Some(pid),
self.nfa.start_pattern(pid).unwrap(),
)?;
}
}
// NOTE: One wonders what the effects of treating 'uncompiled_nfa_ids'
// as a stack are. It is really an unordered *set* of NFA state IDs.
// If it, for example, in practice led to discovering whether a regex
// was or wasn't one-pass later than if we processed NFA state IDs in
// ascending order, then that would make this routine more costly in
// the somewhat common case of a regex that isn't one-pass.
while let Some(nfa_id) = self.uncompiled_nfa_ids.pop() {
let dfa_id = self.nfa_to_dfa_id[nfa_id];
// Once we see a match, we keep going, but don't add any new
// transitions. Normally we'd just stop, but we have to keep
// going in order to verify that our regex is actually one-pass.
self.matched = false;
// The NFA states we've already explored for this DFA state.
self.seen.clear();
// The NFA states to explore via epsilon transitions. If we ever
// try to push an NFA state that we've already seen, then the NFA
// is not one-pass because it implies there are multiple epsilon
// transition paths that lead to the same NFA state. In other
// words, there is ambiguity.
self.stack_push(nfa_id, Epsilons::empty())?;
while let Some((id, epsilons)) = self.stack.pop() {
match *self.nfa.state(id) {
thompson::State::ByteRange { ref trans } => {
self.compile_transition(dfa_id, trans, epsilons)?;
}
thompson::State::Sparse(ref sparse) => {
for trans in sparse.transitions.iter() {
self.compile_transition(dfa_id, trans, epsilons)?;
}
}
thompson::State::Dense(ref dense) => {
for trans in dense.iter() {
self.compile_transition(dfa_id, &trans, epsilons)?;
}
}
thompson::State::Look { look, next } => {
let looks = epsilons.looks().insert(look);
self.stack_push(next, epsilons.set_looks(looks))?;
}
thompson::State::Union { ref alternates } => {
for &sid in alternates.iter().rev() {
self.stack_push(sid, epsilons)?;
}
}
thompson::State::BinaryUnion { alt1, alt2 } => {
self.stack_push(alt2, epsilons)?;
self.stack_push(alt1, epsilons)?;
}
thompson::State::Capture { next, slot, .. } => {
let slot = slot.as_usize();
let epsilons = if slot < explicit_slot_start {
// If this is an implicit slot, we don't care
// about it, since we handle implicit slots in
// the search routine. We can get away with that
// because there are 2 implicit slots for every
// pattern.
epsilons
} else {
// Offset our explicit slots so that they start
// at index 0.
let offset = slot - explicit_slot_start;
epsilons.set_slots(epsilons.slots().insert(offset))
};
self.stack_push(next, epsilons)?;
}
thompson::State::Fail => {
continue;
}
thompson::State::Match { pattern_id } => {
// If we found two different paths to a match state
// for the same DFA state, then we have ambiguity.
// Thus, it's not one-pass.
if self.matched {
return Err(BuildError::not_one_pass(
"multiple epsilon transitions to match state",
));
}
self.matched = true;
// Shove the matching pattern ID and the 'epsilons'
// into the current DFA state's pattern epsilons. The
// 'epsilons' includes the slots we need to capture
// before reporting the match and also the conditional
// epsilon transitions we need to check before we can
// report a match.
self.dfa.set_pattern_epsilons(
dfa_id,
PatternEpsilons::empty()
.set_pattern_id(pattern_id)
.set_epsilons(epsilons),
);
// N.B. It is tempting to just bail out here when
// compiling a leftmost-first DFA, since we will never
// compile any more transitions in that case. But we
// actually need to keep going in order to verify that
// we actually have a one-pass regex. e.g., We might
// see more Match states (e.g., for other patterns)
// that imply that we don't have a one-pass regex.
// So instead, we mark that we've found a match and
// continue on. When we go to compile a new DFA state,
// we just skip that part. But otherwise check that the
// one-pass property is upheld.
}
}
}
}
self.shuffle_states();
Ok(self.dfa)
}
/// Shuffle all match states to the end of the transition table and set
/// 'min_match_id' to the ID of the first such match state.
///
/// The point of this is to make it extremely cheap to determine whether
/// a state is a match state or not. We need to check on this on every
/// transition during a search, so it being cheap is important. This
/// permits us to check it by simply comparing two state identifiers, as
/// opposed to looking for the pattern ID in the state's `PatternEpsilons`.
/// (Which requires a memory load and some light arithmetic.)
fn shuffle_states(&mut self) {
let mut remapper = Remapper::new(&self.dfa);
let mut next_dest = self.dfa.last_state_id();
for i in (0..self.dfa.state_len()).rev() {
let id = StateID::must(i);
let is_match =
self.dfa.pattern_epsilons(id).pattern_id().is_some();
if !is_match {
continue;
}
remapper.swap(&mut self.dfa, next_dest, id);
self.dfa.min_match_id = next_dest;
next_dest = self.dfa.prev_state_id(next_dest).expect(
"match states should be a proper subset of all states",
);
}
remapper.remap(&mut self.dfa);
}
/// Compile the given NFA transition into the DFA state given.
///
/// 'Epsilons' corresponds to any conditional epsilon transitions that need
/// to be satisfied to follow this transition, and any slots that need to
/// be saved if the transition is followed.
///
/// If this transition indicates that the NFA is not one-pass, then
/// this returns an error. (This occurs, for example, if the DFA state
/// already has a transition defined for the same input symbols as the
/// given transition, *and* the result of the old and new transitions is
/// different.)
fn compile_transition(
&mut self,
dfa_id: StateID,
trans: &thompson::Transition,
epsilons: Epsilons,
) -> Result<(), BuildError> {
let next_dfa_id = self.add_dfa_state_for_nfa_state(trans.next)?;
for byte in self
.classes
.representatives(trans.start..=trans.end)
.filter_map(|r| r.as_u8())
{
let oldtrans = self.dfa.transition(dfa_id, byte);
let newtrans =
Transition::new(self.matched, next_dfa_id, epsilons);
// If the old transition points to the DEAD state, then we know
// 'byte' has not been mapped to any transition for this DFA state
// yet. So set it unconditionally. Otherwise, we require that the
// old and new transitions are equivalent. Otherwise, there is
// ambiguity and thus the regex is not one-pass.
if oldtrans.state_id() == DEAD {
self.dfa.set_transition(dfa_id, byte, newtrans);
} else if oldtrans != newtrans {
return Err(BuildError::not_one_pass(
"conflicting transition",
));
}
}
Ok(())
}
/// Add a start state to the DFA corresponding to the given NFA starting
/// state ID.
///
/// If adding a state would blow any limits (configured or hard-coded),
/// then an error is returned.
///
/// If the starting state is an anchored state for a particular pattern,
/// then callers must provide the pattern ID for that starting state.
/// Callers must also ensure that the first starting state added is the
/// start state for all patterns, and then each anchored starting state for
/// each pattern (if necessary) added in order. Otherwise, this panics.
fn add_start_state(
&mut self,
pid: Option<PatternID>,
nfa_id: StateID,
) -> Result<StateID, BuildError> {
match pid {
// With no pid, this should be the start state for all patterns
// and thus be the first one.
None => assert!(self.dfa.starts.is_empty()),
// With a pid, we want it to be at self.dfa.starts[pid+1].
Some(pid) => assert!(self.dfa.starts.len() == pid.one_more()),
}
let dfa_id = self.add_dfa_state_for_nfa_state(nfa_id)?;
self.dfa.starts.push(dfa_id);
Ok(dfa_id)
}
/// Add a new DFA state corresponding to the given NFA state. If adding a
/// state would blow any limits (configured or hard-coded), then an error
/// is returned. If a DFA state already exists for the given NFA state,
/// then that DFA state's ID is returned and no new states are added.
///
/// It is not expected that this routine is called for every NFA state.
/// Instead, an NFA state ID will usually correspond to the "start" state
/// for a sub-graph of the NFA, where all states in the sub-graph are
/// reachable via epsilon transitions (conditional or unconditional). That
/// sub-graph of NFA states is ultimately what produces a single DFA state.
fn add_dfa_state_for_nfa_state(
&mut self,
nfa_id: StateID,
) -> Result<StateID, BuildError> {
// If we've already built a DFA state for the given NFA state, then
// just return that. We definitely do not want to have more than one
// DFA state in existence for the same NFA state, since all but one of
// them will likely become unreachable. And at least some of them are
// likely to wind up being incomplete.
let existing_dfa_id = self.nfa_to_dfa_id[nfa_id];
if existing_dfa_id != DEAD {
return Ok(existing_dfa_id);
}
// If we don't have any DFA state yet, add it and then add the given
// NFA state to the list of states to explore.
let dfa_id = self.add_empty_state()?;
self.nfa_to_dfa_id[nfa_id] = dfa_id;
self.uncompiled_nfa_ids.push(nfa_id);
Ok(dfa_id)
}
/// Unconditionally add a new empty DFA state. If adding it would exceed
/// any limits (configured or hard-coded), then an error is returned. The
/// ID of the new state is returned on success.
///
/// The added state is *not* a match state.
fn add_empty_state(&mut self) -> Result<StateID, BuildError> {
let state_limit = Transition::STATE_ID_LIMIT;
// Note that unlike dense and lazy DFAs, we specifically do NOT
// premultiply our state IDs here. The reason is that we want to pack
// our state IDs into 64-bit transitions with other info, so the fewer
// the bits we use for state IDs the better. If we premultiply, then
// our state ID space shrinks. We justify this by the assumption that
// a one-pass DFA is just already doing a fair bit more work than a
// normal DFA anyway, so an extra multiplication to compute a state
// transition doesn't seem like a huge deal.
let next_id = self.dfa.table.len() >> self.dfa.stride2();
let id = StateID::new(next_id)
.map_err(|_| BuildError::too_many_states(state_limit))?;
if id.as_u64() > Transition::STATE_ID_LIMIT {
return Err(BuildError::too_many_states(state_limit));
}
self.dfa
.table
.extend(core::iter::repeat(Transition(0)).take(self.dfa.stride()));
// The default empty value for 'PatternEpsilons' is sadly not all
// zeroes. Instead, a special sentinel is used to indicate that there
// is no pattern. So we need to explicitly set the pattern epsilons to
// the correct "empty" PatternEpsilons.
self.dfa.set_pattern_epsilons(id, PatternEpsilons::empty());
if let Some(size_limit) = self.config.get_size_limit() {
if self.dfa.memory_usage() > size_limit {
return Err(BuildError::exceeded_size_limit(size_limit));
}
}
Ok(id)
}
/// Push the given NFA state ID and its corresponding epsilons (slots and
/// conditional epsilon transitions) on to a stack for use in a depth first
/// traversal of a sub-graph of the NFA.
///
/// If the given NFA state ID has already been pushed on to the stack, then
/// it indicates the regex is not one-pass and this correspondingly returns
/// an error.
fn stack_push(
&mut self,
nfa_id: StateID,
epsilons: Epsilons,
) -> Result<(), BuildError> {
// If we already have seen a match and we are compiling a leftmost
// first DFA, then we shouldn't add any more states to look at. This is
// effectively how preference order and non-greediness is implemented.
// if !self.config.get_match_kind().continue_past_first_match()
// && self.matched
// {
// return Ok(());
// }
if !self.seen.insert(nfa_id) {
return Err(BuildError::not_one_pass(
"multiple epsilon transitions to same state",
));
}
self.stack.push((nfa_id, epsilons));
Ok(())
}
}
/// A one-pass DFA for executing a subset of anchored regex searches while
/// resolving capturing groups.
///
/// A one-pass DFA can be built from an NFA that is one-pass. An NFA is
/// one-pass when there is never any ambiguity about how to continue a search.
/// For example, `a*a` is not one-pass becuase during a search, it's not
/// possible to know whether to continue matching the `a*` or to move on to
/// the single `a`. However, `a*b` is one-pass, because for every byte in the
/// input, it's always clear when to move on from `a*` to `b`.
///
/// # Only anchored searches are supported
///
/// In this crate, especially for DFAs, unanchored searches are implemented by
/// treating the pattern as if it had a `(?s-u:.)*?` prefix. While the prefix
/// is one-pass on its own, adding anything after it, e.g., `(?s-u:.)*?a` will
/// make the overall pattern not one-pass. Why? Because the `(?s-u:.)` matches
/// any byte, and there is therefore ambiguity as to when the prefix should
/// stop matching and something else should start matching.
///
/// Therefore, one-pass DFAs do not support unanchored searches. In addition
/// to many regexes simply not being one-pass, it implies that one-pass DFAs
/// have limited utility. With that said, when a one-pass DFA can be used, it
/// can potentially provide a dramatic speed up over alternatives like the
/// [`BoundedBacktracker`](crate::nfa::thompson::backtrack::BoundedBacktracker)
/// and the [`PikeVM`](crate::nfa::thompson::pikevm::PikeVM). In particular,
/// a one-pass DFA is the only DFA capable of reporting the spans of matching
/// capturing groups.
///
/// To clarify, when we say that unanchored searches are not supported, what
/// that actually means is:
///
/// * The high level routines, [`DFA::is_match`] and [`DFA::captures`], always
/// do anchored searches.
/// * Since iterators are most useful in the context of unanchored searches,
/// there is no `DFA::captures_iter` method.
/// * For lower level routines like [`DFA::try_search`], an error will be
/// returned if the given [`Input`] is configured to do an unanchored search or
/// search for an invalid pattern ID. (Note that an [`Input`] is configured to
/// do an unanchored search by default, so just giving a `Input::new` is
/// guaranteed to return an error.)
///
/// # Other limitations
///
/// In addition to the [configurable heap limit](Config::size_limit) and
/// the requirement that a regex pattern be one-pass, there are some other
/// limitations:
///
/// * There is an internal limit on the total number of explicit capturing
/// groups that appear across all patterns. It is somewhat small and there is
/// no way to configure it. If your pattern(s) exceed this limit, then building
/// a one-pass DFA will fail.
/// * If the number of patterns exceeds an internal unconfigurable limit, then
/// building a one-pass DFA will fail. This limit is quite large and you're
/// unlikely to hit it.
/// * If the total number of states exceeds an internal unconfigurable limit,
/// then building a one-pass DFA will fail. This limit is quite large and
/// you're unlikely to hit it.
///
/// # Other examples of regexes that aren't one-pass
///
/// One particularly unfortunate example is that enabling Unicode can cause
/// regexes that were one-pass to no longer be one-pass. Consider the regex
/// `(?-u)\w*\s` for example. It is one-pass because there is exactly no
/// overlap between the ASCII definitions of `\w` and `\s`. But `\w*\s`
/// (i.e., with Unicode enabled) is *not* one-pass because `\w` and `\s` get
/// translated to UTF-8 automatons. And while the *codepoints* in `\w` and `\s`
/// do not overlap, the underlying UTF-8 encodings do. Indeed, because of the
/// overlap between UTF-8 automata, the use of Unicode character classes will
/// tend to vastly increase the likelihood of a regex not being one-pass.
///
/// # How does one know if a regex is one-pass or not?
///
/// At the time of writing, the only way to know is to try and build a one-pass
/// DFA. The one-pass property is checked while constructing the DFA.
///
/// This does mean that you might potentially waste some CPU cycles and memory
/// by optimistically trying to build a one-pass DFA. But this is currently the
/// only way. In the future, building a one-pass DFA might be able to use some
/// heuristics to detect common violations of the one-pass property and bail
/// more quickly.
///
/// # Resource usage
///
/// Unlike a general DFA, a one-pass DFA has stricter bounds on its resource
/// usage. Namely, construction of a one-pass DFA has a time and space
/// complexity of `O(n)`, where `n ~ nfa.states().len()`. (A general DFA's time
/// and space complexity is `O(2^n)`.) This smaller time bound is achieved
/// because there is at most one DFA state created for each NFA state. If
/// additional DFA states would be required, then the pattern is not one-pass
/// and construction will fail.
///
/// Note though that currently, this DFA uses a fully dense representation.
/// This means that while its space complexity is no worse than an NFA, it may
/// in practice use more memory because of higher constant factors. The reason
/// for this trade off is two-fold. Firstly, a dense representation makes the
/// search faster. Secondly, the bigger an NFA, the more unlikely it is to be
/// one-pass. Therefore, most one-pass DFAs are usually pretty small.
///
/// # Example
///
/// This example shows that the one-pass DFA implements Unicode word boundaries
/// correctly while simultaneously reporting spans for capturing groups that
/// participate in a match. (This is the only DFA that implements full support
/// for Unicode word boundaries.)
///
/// ```
/// # if cfg!(miri) { return Ok(()); } // miri takes too long
/// use regex_automata::{dfa::onepass::DFA, Match, Span};
///
/// let re = DFA::new(r"\b(?P<first>\w+)[[:space:]]+(?P<last>\w+)\b")?;
/// let (mut cache, mut caps) = (re.create_cache(), re.create_captures());
///
/// re.captures(&mut cache, "Шерлок Холмс", &mut caps);
/// assert_eq!(Some(Match::must(0, 0..23)), caps.get_match());
/// assert_eq!(Some(Span::from(0..12)), caps.get_group_by_name("first"));
/// assert_eq!(Some(Span::from(13..23)), caps.get_group_by_name("last"));
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// # Example: iteration
///
/// Unlike other regex engines in this crate, this one does not provide
/// iterator search functions. This is because a one-pass DFA only supports
/// anchored searches, and so iterator functions are generally not applicable.
///
/// However, if you know that all of your matches are
/// directly adjacent, then an iterator can be used. The
/// [`util::iter::Searcher`](crate::util::iter::Searcher) type can be used for
/// this purpose:
///
/// ```
/// # if cfg!(miri) { return Ok(()); } // miri takes too long
/// use regex_automata::{
/// dfa::onepass::DFA,
/// util::iter::Searcher,
/// Anchored, Input, Span,
/// };
///
/// let re = DFA::new(r"\w(\d)\w")?;
/// let (mut cache, caps) = (re.create_cache(), re.create_captures());
/// let input = Input::new("a1zb2yc3x").anchored(Anchored::Yes);
///
/// let mut it = Searcher::new(input).into_captures_iter(caps, |input, caps| {
/// Ok(re.try_search(&mut cache, input, caps)?)
/// }).infallible();
/// let caps0 = it.next().unwrap();
/// assert_eq!(Some(Span::from(1..2)), caps0.get_group(1));
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[derive(Clone)]
pub struct DFA {
/// The configuration provided by the caller.
config: Config,
/// The NFA used to build this DFA.
///
/// NOTE: We probably don't need to store the NFA here, but we use enough
/// bits from it that it's convenient to do so. And there really isn't much
/// cost to doing so either, since an NFA is reference counted internally.
nfa: NFA,
/// The transition table. Given a state ID 's' and a byte of haystack 'b',
/// the next state is `table[sid + classes[byte]]`.
///
/// The stride of this table (i.e., the number of columns) is always
/// a power of 2, even if the alphabet length is smaller. This makes
/// converting between state IDs and state indices very cheap.
///
/// Note that the stride always includes room for one extra "transition"
/// that isn't actually a transition. It is a 'PatternEpsilons' that is
/// used for match states only. Because of this, the maximum number of
/// active columns in the transition table is 257, which means the maximum
/// stride is 512 (the next power of 2 greater than or equal to 257).
table: Vec<Transition>,
/// The DFA state IDs of the starting states.
///
/// `starts[0]` is always present and corresponds to the starting state
/// when searching for matches of any pattern in the DFA.
///
/// `starts[i]` where i>0 corresponds to the starting state for the pattern
/// ID 'i-1'. These starting states are optional.
starts: Vec<StateID>,
/// Every state ID >= this value corresponds to a match state.
///
/// This is what a search uses to detect whether a state is a match state
/// or not. It requires only a simple comparison instead of bit-unpacking
/// the PatternEpsilons from every state.
min_match_id: StateID,
/// The alphabet of this DFA, split into equivalence classes. Bytes in the
/// same equivalence class can never discriminate between a match and a
/// non-match.
classes: ByteClasses,
/// The number of elements in each state in the transition table. This may
/// be less than the stride, since the stride is always a power of 2 and
/// the alphabet length can be anything up to and including 256.
alphabet_len: usize,
/// The number of columns in the transition table, expressed as a power of
/// 2.
stride2: usize,
/// The offset at which the PatternEpsilons for a match state is stored in
/// the transition table.
///
/// PERF: One wonders whether it would be better to put this in a separate
/// allocation, since only match states have a non-empty PatternEpsilons
/// and the number of match states tends be dwarfed by the number of
/// non-match states. So this would save '8*len(non_match_states)' for each
/// DFA. The question is whether moving this to a different allocation will
/// lead to a perf hit during searches. You might think dealing with match
/// states is rare, but some regexes spend a lot of time in match states
/// gobbling up input. But... match state handling is already somewhat
/// expensive, so maybe this wouldn't do much? Either way, it's worth
/// experimenting.
pateps_offset: usize,
/// The first explicit slot index. This refers to the first slot appearing
/// immediately after the last implicit slot. It is always 'patterns.len()
/// * 2'.
///
/// We record this because we only store the explicit slots in our DFA
/// transition table that need to be saved. Implicit slots are handled
/// automatically as part of the search.
explicit_slot_start: usize,
}
impl DFA {
/// Parse the given regular expression using the default configuration and
/// return the corresponding one-pass DFA.
///
/// If you want a non-default configuration, then use the [`Builder`] to
/// set your own configuration.
///
/// # Example
///
/// ```
/// use regex_automata::{dfa::onepass::DFA, Match};
///
/// let re = DFA::new("foo[0-9]+bar")?;
/// let (mut cache, mut caps) = (re.create_cache(), re.create_captures());
///
/// re.captures(&mut cache, "foo12345barzzz", &mut caps);
/// assert_eq!(Some(Match::must(0, 0..11)), caps.get_match());
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[cfg(feature = "syntax")]
#[inline]
pub fn new(pattern: &str) -> Result<DFA, BuildError> {
DFA::builder().build(pattern)
}
/// Like `new`, but parses multiple patterns into a single "multi regex."
/// This similarly uses the default regex configuration.
///
/// # Example
///
/// ```
/// use regex_automata::{dfa::onepass::DFA, Match};
///
/// let re = DFA::new_many(&["[a-z]+", "[0-9]+"])?;
/// let (mut cache, mut caps) = (re.create_cache(), re.create_captures());
///
/// re.captures(&mut cache, "abc123", &mut caps);
/// assert_eq!(Some(Match::must(0, 0..3)), caps.get_match());
///
/// re.captures(&mut cache, "123abc", &mut caps);
/// assert_eq!(Some(Match::must(1, 0..3)), caps.get_match());
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[cfg(feature = "syntax")]
#[inline]
pub fn new_many<P: AsRef<str>>(patterns: &[P]) -> Result<DFA, BuildError> {
DFA::builder().build_many(patterns)
}
/// Like `new`, but builds a one-pass DFA directly from an NFA. This is
/// useful if you already have an NFA, or even if you hand-assembled the
/// NFA.
///
/// # Example
///
/// This shows how to hand assemble a regular expression via its HIR,
/// compile an NFA from it and build a one-pass DFA from the NFA.
///
/// ```
/// use regex_automata::{
/// dfa::onepass::DFA,
/// nfa::thompson::NFA,
/// Match,
/// };
/// use regex_syntax::hir::{Hir, Class, ClassBytes, ClassBytesRange};
///
/// let hir = Hir::class(Class::Bytes(ClassBytes::new(vec![
/// ClassBytesRange::new(b'0', b'9'),
/// ClassBytesRange::new(b'A', b'Z'),
/// ClassBytesRange::new(b'_', b'_'),
/// ClassBytesRange::new(b'a', b'z'),
/// ])));
///
/// let config = NFA::config().nfa_size_limit(Some(1_000));
/// let nfa = NFA::compiler().configure(config).build_from_hir(&hir)?;
///
/// let re = DFA::new_from_nfa(nfa)?;
/// let (mut cache, mut caps) = (re.create_cache(), re.create_captures());
/// let expected = Some(Match::must(0, 0..1));
/// re.captures(&mut cache, "A", &mut caps);
/// assert_eq!(expected, caps.get_match());
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
pub fn new_from_nfa(nfa: NFA) -> Result<DFA, BuildError> {
DFA::builder().build_from_nfa(nfa)
}
/// Create a new one-pass DFA that matches every input.
///
/// # Example
///
/// ```
/// use regex_automata::{dfa::onepass::DFA, Match};
///
/// let dfa = DFA::always_match()?;
/// let mut cache = dfa.create_cache();
/// let mut caps = dfa.create_captures();
///
/// let expected = Match::must(0, 0..0);
/// dfa.captures(&mut cache, "", &mut caps);
/// assert_eq!(Some(expected), caps.get_match());
/// dfa.captures(&mut cache, "foo", &mut caps);
/// assert_eq!(Some(expected), caps.get_match());
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
pub fn always_match() -> Result<DFA, BuildError> {
let nfa = thompson::NFA::always_match();
Builder::new().build_from_nfa(nfa)
}
/// Create a new one-pass DFA that never matches any input.
///
/// # Example
///
/// ```
/// use regex_automata::dfa::onepass::DFA;
///
/// let dfa = DFA::never_match()?;
/// let mut cache = dfa.create_cache();
/// let mut caps = dfa.create_captures();
///
/// dfa.captures(&mut cache, "", &mut caps);
/// assert_eq!(None, caps.get_match());
/// dfa.captures(&mut cache, "foo", &mut caps);
/// assert_eq!(None, caps.get_match());
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
pub fn never_match() -> Result<DFA, BuildError> {
let nfa = thompson::NFA::never_match();
Builder::new().build_from_nfa(nfa)
}
/// Return a default configuration for a DFA.
///
/// This is a convenience routine to avoid needing to import the `Config`
/// type when customizing the construction of a DFA.
///
/// # Example
///
/// This example shows how to change the match semantics of this DFA from
/// its default "leftmost first" to "all." When using "all," non-greediness
/// doesn't apply and neither does preference order matching. Instead, the
/// longest match possible is always returned. (Although, by construction,
/// it's impossible for a one-pass DFA to have a different answer for
/// "preference order" vs "longest match.")
///
/// ```
/// use regex_automata::{dfa::onepass::DFA, Match, MatchKind};
///
/// let re = DFA::builder()
/// .configure(DFA::config().match_kind(MatchKind::All))
/// .build(r"(abc)+?")?;
/// let mut cache = re.create_cache();
/// let mut caps = re.create_captures();
///
/// re.captures(&mut cache, "abcabc", &mut caps);
/// // Normally, the non-greedy repetition would give us a 0..3 match.
/// assert_eq!(Some(Match::must(0, 0..6)), caps.get_match());
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[inline]
pub fn config() -> Config {
Config::new()
}
/// Return a builder for configuring the construction of a DFA.
///
/// This is a convenience routine to avoid needing to import the
/// [`Builder`] type in common cases.
///
/// # Example
///
/// This example shows how to use the builder to disable UTF-8 mode.
///
/// ```
/// # if cfg!(miri) { return Ok(()); } // miri takes too long
/// use regex_automata::{
/// dfa::onepass::DFA,
/// nfa::thompson,
/// util::syntax,
/// Match,
/// };
///
/// let re = DFA::builder()
/// .syntax(syntax::Config::new().utf8(false))
/// .thompson(thompson::Config::new().utf8(false))
/// .build(r"foo(?-u:[^b])ar.*")?;
/// let (mut cache, mut caps) = (re.create_cache(), re.create_captures());
///
/// let haystack = b"foo\xFFarzz\xE2\x98\xFF\n";
/// let expected = Some(Match::must(0, 0..8));
/// re.captures(&mut cache, haystack, &mut caps);
/// assert_eq!(expected, caps.get_match());
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[inline]
pub fn builder() -> Builder {
Builder::new()
}
/// Create a new empty set of capturing groups that is guaranteed to be
/// valid for the search APIs on this DFA.
///
/// A `Captures` value created for a specific DFA cannot be used with any
/// other DFA.
///
/// This is a convenience function for [`Captures::all`]. See the
/// [`Captures`] documentation for an explanation of its alternative
/// constructors that permit the DFA to do less work during a search, and
/// thus might make it faster.
#[inline]
pub fn create_captures(&self) -> Captures {
Captures::all(self.nfa.group_info().clone())
}
/// Create a new cache for this DFA.
///
/// The cache returned should only be used for searches for this
/// DFA. If you want to reuse the cache for another DFA, then you
/// must call [`Cache::reset`] with that DFA (or, equivalently,
/// [`DFA::reset_cache`]).
#[inline]
pub fn create_cache(&self) -> Cache {
Cache::new(self)
}
/// Reset the given cache such that it can be used for searching with the
/// this DFA (and only this DFA).
///
/// A cache reset permits reusing memory already allocated in this cache
/// with a different DFA.
///
/// # Example
///
/// This shows how to re-purpose a cache for use with a different DFA.
///
/// ```
/// # if cfg!(miri) { return Ok(()); } // miri takes too long
/// use regex_automata::{dfa::onepass::DFA, Match};
///
/// let re1 = DFA::new(r"\w")?;
/// let re2 = DFA::new(r"\W")?;
/// let mut caps1 = re1.create_captures();
/// let mut caps2 = re2.create_captures();
///
/// let mut cache = re1.create_cache();
/// assert_eq!(
/// Some(Match::must(0, 0..2)),
/// { re1.captures(&mut cache, "Δ", &mut caps1); caps1.get_match() },
/// );
///
/// // Using 'cache' with re2 is not allowed. It may result in panics or
/// // incorrect results. In order to re-purpose the cache, we must reset
/// // it with the one-pass DFA we'd like to use it with.
/// //
/// // Similarly, after this reset, using the cache with 're1' is also not
/// // allowed.
/// re2.reset_cache(&mut cache);
/// assert_eq!(
/// Some(Match::must(0, 0..3)),
/// { re2.captures(&mut cache, "☃", &mut caps2); caps2.get_match() },
/// );
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[inline]
pub fn reset_cache(&self, cache: &mut Cache) {
cache.reset(self);
}
/// Return the config for this one-pass DFA.
#[inline]
pub fn get_config(&self) -> &Config {
&self.config
}
/// Returns a reference to the underlying NFA.
#[inline]
pub fn get_nfa(&self) -> &NFA {
&self.nfa
}
/// Returns the total number of patterns compiled into this DFA.
///
/// In the case of a DFA that contains no patterns, this returns `0`.
#[inline]
pub fn pattern_len(&self) -> usize {
self.get_nfa().pattern_len()
}
/// Returns the total number of states in this one-pass DFA.
///
/// Note that unlike dense or sparse DFAs, a one-pass DFA does not expose
/// a low level DFA API. Therefore, this routine has little use other than
/// being informational.
#[inline]
pub fn state_len(&self) -> usize {
self.table.len() >> self.stride2()
}
/// Returns the total number of elements in the alphabet for this DFA.
///
/// That is, this returns the total number of transitions that each
/// state in this DFA must have. The maximum alphabet size is 256, which
/// corresponds to each possible byte value.
///
/// The alphabet size may be less than 256 though, and unless
/// [`Config::byte_classes`] is disabled, it is typically must less than
/// 256. Namely, bytes are grouped into equivalence classes such that no
/// two bytes in the same class can distinguish a match from a non-match.
/// For example, in the regex `^[a-z]+$`, the ASCII bytes `a-z` could
/// all be in the same equivalence class. This leads to a massive space
/// savings.
///
/// Note though that the alphabet length does _not_ necessarily equal the
/// total stride space taken up by a single DFA state in the transition
/// table. Namely, for performance reasons, the stride is always the
/// smallest power of two that is greater than or equal to the alphabet
/// length. For this reason, [`DFA::stride`] or [`DFA::stride2`] are
/// often more useful. The alphabet length is typically useful only for
/// informational purposes.
///
/// Note also that unlike dense or sparse DFAs, a one-pass DFA does
/// not have a special end-of-input (EOI) transition. This is because
/// a one-pass DFA handles look-around assertions explicitly (like the
/// [`PikeVM`](crate::nfa::thompson::pikevm::PikeVM)) and does not build
/// them into the transitions of the DFA.
#[inline]
pub fn alphabet_len(&self) -> usize {
self.alphabet_len
}
/// Returns the total stride for every state in this DFA, expressed as the
/// exponent of a power of 2. The stride is the amount of space each state
/// takes up in the transition table, expressed as a number of transitions.
/// (Unused transitions map to dead states.)
///
/// The stride of a DFA is always equivalent to the smallest power of
/// 2 that is greater than or equal to the DFA's alphabet length. This
/// definition uses extra space, but possibly permits faster translation
/// between state identifiers and their corresponding offsets in this DFA's
/// transition table.
///
/// For example, if the DFA's stride is 16 transitions, then its `stride2`
/// is `4` since `2^4 = 16`.
///
/// The minimum `stride2` value is `1` (corresponding to a stride of `2`)
/// while the maximum `stride2` value is `9` (corresponding to a stride
/// of `512`). The maximum in theory should be `8`, but because of some
/// implementation quirks that may be relaxed in the future, it is one more
/// than `8`. (Do note that a maximal stride is incredibly rare, as it
/// would imply that there is almost no redundant in the regex pattern.)
///
/// Note that unlike dense or sparse DFAs, a one-pass DFA does not expose
/// a low level DFA API. Therefore, this routine has little use other than
/// being informational.
#[inline]
pub fn stride2(&self) -> usize {
self.stride2
}
/// Returns the total stride for every state in this DFA. This corresponds
/// to the total number of transitions used by each state in this DFA's
/// transition table.
///
/// Please see [`DFA::stride2`] for more information. In particular, this
/// returns the stride as the number of transitions, where as `stride2`
/// returns it as the exponent of a power of 2.
///
/// Note that unlike dense or sparse DFAs, a one-pass DFA does not expose
/// a low level DFA API. Therefore, this routine has little use other than
/// being informational.
#[inline]
pub fn stride(&self) -> usize {
1 << self.stride2()
}
/// Returns the memory usage, in bytes, of this DFA.
///
/// The memory usage is computed based on the number of bytes used to
/// represent this DFA.
///
/// This does **not** include the stack size used up by this DFA. To
/// compute that, use `std::mem::size_of::<onepass::DFA>()`.
#[inline]
pub fn memory_usage(&self) -> usize {
use core::mem::size_of;
self.table.len() * size_of::<Transition>()
+ self.starts.len() * size_of::<StateID>()
}
}
impl DFA {
/// Executes an anchored leftmost forward search, and returns true if and
/// only if this one-pass DFA matches the given haystack.
///
/// This routine may short circuit if it knows that scanning future
/// input will never lead to a different result. In particular, if the
/// underlying DFA enters a match state, then this routine will return
/// `true` immediately without inspecting any future input. (Consider how
/// this might make a difference given the regex `a+` on the haystack
/// `aaaaaaaaaaaaaaa`. This routine can stop after it sees the first `a`,
/// but routines like `find` need to continue searching because `+` is
/// greedy by default.)
///
/// The given `Input` is forcefully set to use [`Anchored::Yes`] if the
/// given configuration was [`Anchored::No`] (which is the default).
///
/// # Panics
///
/// This routine panics if the search could not complete. This can occur
/// in the following circumstances:
///
/// * When the provided `Input` configuration is not supported. For
/// example, by providing an unsupported anchor mode. Concretely,
/// this occurs when using [`Anchored::Pattern`] without enabling
/// [`Config::starts_for_each_pattern`].
///
/// When a search panics, callers cannot know whether a match exists or
/// not.
///
/// Use [`DFA::try_search`] if you want to handle these panics as error
/// values instead.
///
/// # Example
///
/// This shows basic usage:
///
/// ```
/// use regex_automata::dfa::onepass::DFA;
///
/// let re = DFA::new("foo[0-9]+bar")?;
/// let mut cache = re.create_cache();
///
/// assert!(re.is_match(&mut cache, "foo12345bar"));
/// assert!(!re.is_match(&mut cache, "foobar"));
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// # Example: consistency with search APIs
///
/// `is_match` is guaranteed to return `true` whenever `captures` returns
/// a match. This includes searches that are executed entirely within a
/// codepoint:
///
/// ```
/// use regex_automata::{dfa::onepass::DFA, Input};
///
/// let re = DFA::new("a*")?;
/// let mut cache = re.create_cache();
///
/// assert!(!re.is_match(&mut cache, Input::new("☃").span(1..2)));
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// Notice that when UTF-8 mode is disabled, then the above reports a
/// match because the restriction against zero-width matches that split a
/// codepoint has been lifted:
///
/// ```
/// use regex_automata::{dfa::onepass::DFA, nfa::thompson::NFA, Input};
///
/// let re = DFA::builder()
/// .thompson(NFA::config().utf8(false))
/// .build("a*")?;
/// let mut cache = re.create_cache();
///
/// assert!(re.is_match(&mut cache, Input::new("☃").span(1..2)));
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[inline]
pub fn is_match<'h, I: Into<Input<'h>>>(
&self,
cache: &mut Cache,
input: I,
) -> bool {
let mut input = input.into().earliest(true);
if matches!(input.get_anchored(), Anchored::No) {
input.set_anchored(Anchored::Yes);
}
self.try_search_slots(cache, &input, &mut []).unwrap().is_some()
}
/// Executes an anchored leftmost forward search, and returns a `Match` if
/// and only if this one-pass DFA matches the given haystack.
///
/// This routine only includes the overall match span. To get access to the
/// individual spans of each capturing group, use [`DFA::captures`].
///
/// The given `Input` is forcefully set to use [`Anchored::Yes`] if the
/// given configuration was [`Anchored::No`] (which is the default).
///
/// # Panics
///
/// This routine panics if the search could not complete. This can occur
/// in the following circumstances:
///
/// * When the provided `Input` configuration is not supported. For
/// example, by providing an unsupported anchor mode. Concretely,
/// this occurs when using [`Anchored::Pattern`] without enabling
/// [`Config::starts_for_each_pattern`].
///
/// When a search panics, callers cannot know whether a match exists or
/// not.
///
/// Use [`DFA::try_search`] if you want to handle these panics as error
/// values instead.
///
/// # Example
///
/// Leftmost first match semantics corresponds to the match with the
/// smallest starting offset, but where the end offset is determined by
/// preferring earlier branches in the original regular expression. For
/// example, `Sam|Samwise` will match `Sam` in `Samwise`, but `Samwise|Sam`
/// will match `Samwise` in `Samwise`.
///
/// Generally speaking, the "leftmost first" match is how most backtracking
/// regular expressions tend to work. This is in contrast to POSIX-style
/// regular expressions that yield "leftmost longest" matches. Namely,
/// both `Sam|Samwise` and `Samwise|Sam` match `Samwise` when using
/// leftmost longest semantics. (This crate does not currently support
/// leftmost longest semantics.)
///
/// ```
/// use regex_automata::{dfa::onepass::DFA, Match};
///
/// let re = DFA::new("foo[0-9]+")?;
/// let mut cache = re.create_cache();
/// let expected = Match::must(0, 0..8);
/// assert_eq!(Some(expected), re.find(&mut cache, "foo12345"));
///
/// // Even though a match is found after reading the first byte (`a`),
/// // the leftmost first match semantics demand that we find the earliest
/// // match that prefers earlier parts of the pattern over later parts.
/// let re = DFA::new("abc|a")?;
/// let mut cache = re.create_cache();
/// let expected = Match::must(0, 0..3);
/// assert_eq!(Some(expected), re.find(&mut cache, "abc"));
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[inline]
pub fn find<'h, I: Into<Input<'h>>>(
&self,
cache: &mut Cache,
input: I,
) -> Option<Match> {
let mut input = input.into();
if matches!(input.get_anchored(), Anchored::No) {
input.set_anchored(Anchored::Yes);
}
if self.get_nfa().pattern_len() == 1 {
let mut slots = [None, None];
let pid =
self.try_search_slots(cache, &input, &mut slots).unwrap()?;
let start = slots[0].unwrap().get();
let end = slots[1].unwrap().get();
return Some(Match::new(pid, Span { start, end }));
}
let ginfo = self.get_nfa().group_info();
let slots_len = ginfo.implicit_slot_len();
let mut slots = vec![None; slots_len];
let pid = self.try_search_slots(cache, &input, &mut slots).unwrap()?;
let start = slots[pid.as_usize() * 2].unwrap().get();
let end = slots[pid.as_usize() * 2 + 1].unwrap().get();
Some(Match::new(pid, Span { start, end }))
}
/// Executes an anchored leftmost forward search and writes the spans
/// of capturing groups that participated in a match into the provided
/// [`Captures`] value. If no match was found, then [`Captures::is_match`]
/// is guaranteed to return `false`.
///
/// The given `Input` is forcefully set to use [`Anchored::Yes`] if the
/// given configuration was [`Anchored::No`] (which is the default).
///
/// # Panics
///
/// This routine panics if the search could not complete. This can occur
/// in the following circumstances:
///
/// * When the provided `Input` configuration is not supported. For
/// example, by providing an unsupported anchor mode. Concretely,
/// this occurs when using [`Anchored::Pattern`] without enabling
/// [`Config::starts_for_each_pattern`].
///
/// When a search panics, callers cannot know whether a match exists or
/// not.
///
/// Use [`DFA::try_search`] if you want to handle these panics as error
/// values instead.
///
/// # Example
///
/// This shows a simple example of a one-pass regex that extracts
/// capturing group spans.
///
/// ```
/// use regex_automata::{dfa::onepass::DFA, Match, Span};
///
/// let re = DFA::new(
/// // Notice that we use ASCII here. The corresponding Unicode regex
/// // is sadly not one-pass.
/// "(?P<first>[[:alpha:]]+)[[:space:]]+(?P<last>[[:alpha:]]+)",
/// )?;
/// let (mut cache, mut caps) = (re.create_cache(), re.create_captures());
///
/// re.captures(&mut cache, "Bruce Springsteen", &mut caps);
/// assert_eq!(Some(Match::must(0, 0..17)), caps.get_match());
/// assert_eq!(Some(Span::from(0..5)), caps.get_group(1));
/// assert_eq!(Some(Span::from(6..17)), caps.get_group_by_name("last"));
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[inline]
pub fn captures<'h, I: Into<Input<'h>>>(
&self,
cache: &mut Cache,
input: I,
caps: &mut Captures,
) {
let mut input = input.into();
if matches!(input.get_anchored(), Anchored::No) {
input.set_anchored(Anchored::Yes);
}
self.try_search(cache, &input, caps).unwrap();
}
/// Executes an anchored leftmost forward search and writes the spans
/// of capturing groups that participated in a match into the provided
/// [`Captures`] value. If no match was found, then [`Captures::is_match`]
/// is guaranteed to return `false`.
///
/// The differences with [`DFA::captures`] are:
///
/// 1. This returns an error instead of panicking if the search fails.
/// 2. Accepts an `&Input` instead of a `Into<Input>`. This permits reusing
/// the same input for multiple searches, which _may_ be important for
/// latency.
/// 3. This does not automatically change the [`Anchored`] mode from `No`
/// to `Yes`. Instead, if [`Input::anchored`] is `Anchored::No`, then an
/// error is returned.
///
/// # Errors
///
/// This routine errors if the search could not complete. This can occur
/// in the following circumstances:
///
/// * When the provided `Input` configuration is not supported. For
/// example, by providing an unsupported anchor mode. Concretely,
/// this occurs when using [`Anchored::Pattern`] without enabling
/// [`Config::starts_for_each_pattern`].
///
/// When a search returns an error, callers cannot know whether a match
/// exists or not.
///
/// # Example: specific pattern search
///
/// This example shows how to build a multi-regex that permits searching
/// for specific patterns. Note that this is somewhat less useful than
/// in other regex engines, since a one-pass DFA by definition has no
/// ambiguity about which pattern can match at a position. That is, if it
/// were possible for two different patterns to match at the same starting
/// position, then the multi-regex would not be one-pass and construction
/// would have failed.
///
/// Nevertheless, this can still be useful if you only care about matches
/// for a specific pattern, and want the DFA to report "no match" even if
/// some other pattern would have matched.
///
/// Note that in order to make use of this functionality,
/// [`Config::starts_for_each_pattern`] must be enabled. It is disabled
/// by default since it may result in higher memory usage.
///
/// ```
/// use regex_automata::{
/// dfa::onepass::DFA, Anchored, Input, Match, PatternID,
/// };
///
/// let re = DFA::builder()
/// .configure(DFA::config().starts_for_each_pattern(true))
/// .build_many(&["[a-z]+", "[0-9]+"])?;
/// let (mut cache, mut caps) = (re.create_cache(), re.create_captures());
/// let haystack = "123abc";
/// let input = Input::new(haystack).anchored(Anchored::Yes);
///
/// // A normal multi-pattern search will show pattern 1 matches.
/// re.try_search(&mut cache, &input, &mut caps)?;
/// assert_eq!(Some(Match::must(1, 0..3)), caps.get_match());
///
/// // If we only want to report pattern 0 matches, then we'll get no
/// // match here.
/// let input = input.anchored(Anchored::Pattern(PatternID::must(0)));
/// re.try_search(&mut cache, &input, &mut caps)?;
/// assert_eq!(None, caps.get_match());
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// # Example: specifying the bounds of a search
///
/// This example shows how providing the bounds of a search can produce
/// different results than simply sub-slicing the haystack.
///
/// ```
/// # if cfg!(miri) { return Ok(()); } // miri takes too long
/// use regex_automata::{dfa::onepass::DFA, Anchored, Input, Match};
///
/// // one-pass DFAs fully support Unicode word boundaries!
/// // A sad joke is that a Unicode aware regex like \w+\s is not one-pass.
/// // :-(
/// let re = DFA::new(r"\b[0-9]{3}\b")?;
/// let (mut cache, mut caps) = (re.create_cache(), re.create_captures());
/// let haystack = "foo123bar";
///
/// // Since we sub-slice the haystack, the search doesn't know about
/// // the larger context and assumes that `123` is surrounded by word
/// // boundaries. And of course, the match position is reported relative
/// // to the sub-slice as well, which means we get `0..3` instead of
/// // `3..6`.
/// let expected = Some(Match::must(0, 0..3));
/// let input = Input::new(&haystack[3..6]).anchored(Anchored::Yes);
/// re.try_search(&mut cache, &input, &mut caps)?;
/// assert_eq!(expected, caps.get_match());
///
/// // But if we provide the bounds of the search within the context of the
/// // entire haystack, then the search can take the surrounding context
/// // into account. (And if we did find a match, it would be reported
/// // as a valid offset into `haystack` instead of its sub-slice.)
/// let expected = None;
/// let input = Input::new(haystack).range(3..6).anchored(Anchored::Yes);
/// re.try_search(&mut cache, &input, &mut caps)?;
/// assert_eq!(expected, caps.get_match());
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[inline]
pub fn try_search(
&self,
cache: &mut Cache,
input: &Input<'_>,
caps: &mut Captures,
) -> Result<(), MatchError> {
let pid = self.try_search_slots(cache, input, caps.slots_mut())?;
caps.set_pattern(pid);
Ok(())
}
/// Executes an anchored leftmost forward search and writes the spans
/// of capturing groups that participated in a match into the provided
/// `slots`, and returns the matching pattern ID. The contents of the
/// slots for patterns other than the matching pattern are unspecified. If
/// no match was found, then `None` is returned and the contents of all
/// `slots` is unspecified.
///
/// This is like [`DFA::try_search`], but it accepts a raw slots slice
/// instead of a `Captures` value. This is useful in contexts where you
/// don't want or need to allocate a `Captures`.
///
/// It is legal to pass _any_ number of slots to this routine. If the regex
/// engine would otherwise write a slot offset that doesn't fit in the
/// provided slice, then it is simply skipped. In general though, there are
/// usually three slice lengths you might want to use:
///
/// * An empty slice, if you only care about which pattern matched.
/// * A slice with
/// [`pattern_len() * 2`](crate::dfa::onepass::DFA::pattern_len)
/// slots, if you only care about the overall match spans for each matching
/// pattern.
/// * A slice with
/// [`slot_len()`](crate::util::captures::GroupInfo::slot_len) slots, which
/// permits recording match offsets for every capturing group in every
/// pattern.
///
/// # Errors
///
/// This routine errors if the search could not complete. This can occur
/// in the following circumstances:
///
/// * When the provided `Input` configuration is not supported. For
/// example, by providing an unsupported anchor mode. Concretely,
/// this occurs when using [`Anchored::Pattern`] without enabling
/// [`Config::starts_for_each_pattern`].
///
/// When a search returns an error, callers cannot know whether a match
/// exists or not.
///
/// # Example
///
/// This example shows how to find the overall match offsets in a
/// multi-pattern search without allocating a `Captures` value. Indeed, we
/// can put our slots right on the stack.
///
/// ```
/// use regex_automata::{dfa::onepass::DFA, Anchored, Input, PatternID};
///
/// let re = DFA::new_many(&[
/// r"[a-zA-Z]+",
/// r"[0-9]+",
/// ])?;
/// let mut cache = re.create_cache();
/// let input = Input::new("123").anchored(Anchored::Yes);
///
/// // We only care about the overall match offsets here, so we just
/// // allocate two slots for each pattern. Each slot records the start
/// // and end of the match.
/// let mut slots = [None; 4];
/// let pid = re.try_search_slots(&mut cache, &input, &mut slots)?;
/// assert_eq!(Some(PatternID::must(1)), pid);
///
/// // The overall match offsets are always at 'pid * 2' and 'pid * 2 + 1'.
/// // See 'GroupInfo' for more details on the mapping between groups and
/// // slot indices.
/// let slot_start = pid.unwrap().as_usize() * 2;
/// let slot_end = slot_start + 1;
/// assert_eq!(Some(0), slots[slot_start].map(|s| s.get()));
/// assert_eq!(Some(3), slots[slot_end].map(|s| s.get()));
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[inline]
pub fn try_search_slots(
&self,
cache: &mut Cache,
input: &Input<'_>,
slots: &mut [Option<NonMaxUsize>],
) -> Result<Option<PatternID>, MatchError> {
let utf8empty = self.get_nfa().has_empty() && self.get_nfa().is_utf8();
if !utf8empty {
return self.try_search_slots_imp(cache, input, slots);
}
// See PikeVM::try_search_slots for why we do this.
let min = self.get_nfa().group_info().implicit_slot_len();
if slots.len() >= min {
return self.try_search_slots_imp(cache, input, slots);
}
if self.get_nfa().pattern_len() == 1 {
let mut enough = [None, None];
let got = self.try_search_slots_imp(cache, input, &mut enough)?;
// This is OK because we know `enough_slots` is strictly bigger
// than `slots`, otherwise this special case isn't reached.
slots.copy_from_slice(&enough[..slots.len()]);
return Ok(got);
}
let mut enough = vec![None; min];
let got = self.try_search_slots_imp(cache, input, &mut enough)?;
// This is OK because we know `enough_slots` is strictly bigger than
// `slots`, otherwise this special case isn't reached.
slots.copy_from_slice(&enough[..slots.len()]);
Ok(got)
}
#[inline(never)]
fn try_search_slots_imp(
&self,
cache: &mut Cache,
input: &Input<'_>,
slots: &mut [Option<NonMaxUsize>],
) -> Result<Option<PatternID>, MatchError> {
let utf8empty = self.get_nfa().has_empty() && self.get_nfa().is_utf8();
match self.search_imp(cache, input, slots)? {
None => return Ok(None),
Some(pid) if !utf8empty => return Ok(Some(pid)),
Some(pid) => {
// These slot indices are always correct because we know our
// 'pid' is valid and thus we know that the slot indices for it
// are valid.
let slot_start = pid.as_usize().wrapping_mul(2);
let slot_end = slot_start.wrapping_add(1);
// OK because we know we have a match and we know our caller
// provided slots are big enough (which we make true above if
// the caller didn't). Namely, we're only here when 'utf8empty'
// is true, and when that's true, we require slots for every
// pattern.
let start = slots[slot_start].unwrap().get();
let end = slots[slot_end].unwrap().get();
// If our match splits a codepoint, then we cannot report is
// as a match. And since one-pass DFAs only support anchored
// searches, we don't try to skip ahead to find the next match.
// We can just quit with nothing.
if start == end && !input.is_char_boundary(start) {
return Ok(None);
}
Ok(Some(pid))
}
}
}
}
impl DFA {
fn search_imp(
&self,
cache: &mut Cache,
input: &Input<'_>,
slots: &mut [Option<NonMaxUsize>],
) -> Result<Option<PatternID>, MatchError> {
// PERF: Some ideas. I ran out of steam after my initial impl to try
// many of these.
//
// 1) Try doing more state shuffling. Right now, all we do is push
// match states to the end of the transition table so that we can do
// 'if sid >= self.min_match_id' to know whether we're in a match
// state or not. But what about doing something like dense DFAs and
// pushing dead, match and states with captures/looks all toward the
// beginning of the transition table. Then we could do 'if sid <=
// self.max_special_id', in which case, we need to do some special
// handling of some sort. Otherwise, we get the happy path, just
// like in a DFA search. The main argument against this is that the
// one-pass DFA is likely to be used most often with capturing groups
// and if capturing groups are common, then this might wind up being a
// pessimization.
//
// 2) Consider moving 'PatternEpsilons' out of the transition table.
// It is only needed for match states and usually a small minority of
// states are match states. Therefore, we're using an extra 'u64' for
// most states.
//
// 3) I played around with the match state handling and it seems like
// there is probably a lot left on the table for improvement. The
// key tension is that the 'find_match' routine is a giant mess, but
// splitting it out into a non-inlineable function is a non-starter
// because the match state might consume input, so 'find_match' COULD
// be called quite a lot, and a function call at that point would trash
// perf. In theory, we could detect whether a match state consumes
// input and then specialize our search routine based on that. In that
// case, maybe an extra function call is OK, but even then, it might be
// too much of a latency hit. Another idea is to just try and figure
// out how to reduce the code size of 'find_match'. RE2 has a trick
// here where the match handling isn't done if we know the next byte of
// input yields a match too. Maybe we adopt that?
//
// This just might be a tricky DFA to optimize.
if input.is_done() {
return Ok(None);
}
// We unfortunately have a bit of book-keeping to do to set things
// up. We do have to setup our cache and clear all of our slots. In
// particular, clearing the slots is necessary for the case where we
// report a match, but one of the capturing groups didn't participate
// in the match but had a span set from a previous search. That would
// be bad. In theory, we could avoid all this slot clearing if we knew
// that every slot was always activated for every match. Then we would
// know they would always be overwritten when a match is found.
let explicit_slots_len = core::cmp::min(
Slots::LIMIT,
slots.len().saturating_sub(self.explicit_slot_start),
);
cache.setup_search(explicit_slots_len);
for slot in cache.explicit_slots() {
*slot = None;
}
for slot in slots.iter_mut() {
*slot = None;
}
// We set the starting slots for every pattern up front. This does
// increase our latency somewhat, but it avoids having to do it every
// time we see a match state (which could be many times in a single
// search if the match state consumes input).
for pid in self.nfa.patterns() {
let i = pid.as_usize() * 2;
if i >= slots.len() {
break;
}
slots[i] = NonMaxUsize::new(input.start());
}
let mut pid = None;
let mut next_sid = match input.get_anchored() {
Anchored::Yes => self.start(),
Anchored::Pattern(pid) => self.start_pattern(pid)?,
Anchored::No => {
// If the regex is itself always anchored, then we're fine,
// even if the search is configured to be unanchored.
if !self.nfa.is_always_start_anchored() {
return Err(MatchError::unsupported_anchored(
Anchored::No,
));
}
self.start()
}
};
let leftmost_first =
matches!(self.config.get_match_kind(), MatchKind::LeftmostFirst);
for at in input.start()..input.end() {
let sid = next_sid;
let trans = self.transition(sid, input.haystack()[at]);
next_sid = trans.state_id();
let epsilons = trans.epsilons();
if sid >= self.min_match_id {
if self.find_match(cache, input, at, sid, slots, &mut pid) {
if input.get_earliest()
|| (leftmost_first && trans.match_wins())
{
return Ok(pid);
}
}
}
if sid == DEAD
|| (!epsilons.looks().is_empty()
&& !self.nfa.look_matcher().matches_set_inline(
epsilons.looks(),
input.haystack(),
at,
))
{
return Ok(pid);
}
epsilons.slots().apply(at, cache.explicit_slots());
}
if next_sid >= self.min_match_id {
self.find_match(
cache,
input,
input.end(),
next_sid,
slots,
&mut pid,
);
}
Ok(pid)
}
/// Assumes 'sid' is a match state and looks for whether a match can
/// be reported. If so, appropriate offsets are written to 'slots' and
/// 'matched_pid' is set to the matching pattern ID.
///
/// Even when 'sid' is a match state, it's possible that a match won't
/// be reported. For example, when the conditional epsilon transitions
/// leading to the match state aren't satisfied at the given position in
/// the haystack.
#[cfg_attr(feature = "perf-inline", inline(always))]
fn find_match(
&self,
cache: &mut Cache,
input: &Input<'_>,
at: usize,
sid: StateID,
slots: &mut [Option<NonMaxUsize>],
matched_pid: &mut Option<PatternID>,
) -> bool {
debug_assert!(sid >= self.min_match_id);
let pateps = self.pattern_epsilons(sid);
let epsilons = pateps.epsilons();
if !epsilons.looks().is_empty()
&& !self.nfa.look_matcher().matches_set_inline(
epsilons.looks(),
input.haystack(),
at,
)
{
return false;
}
let pid = pateps.pattern_id_unchecked();
// This calculation is always correct because we know our 'pid' is
// valid and thus we know that the slot indices for it are valid.
let slot_end = pid.as_usize().wrapping_mul(2).wrapping_add(1);
// Set the implicit 'end' slot for the matching pattern. (The 'start'
// slot was set at the beginning of the search.)
if slot_end < slots.len() {
slots[slot_end] = NonMaxUsize::new(at);
}
// If the caller provided enough room, copy the previously recorded
// explicit slots from our scratch space to the caller provided slots.
// We *also* need to set any explicit slots that are active as part of
// the path to the match state.
if self.explicit_slot_start < slots.len() {
// NOTE: The 'cache.explicit_slots()' slice is setup at the
// beginning of every search such that it is guaranteed to return a
// slice of length equivalent to 'slots[explicit_slot_start..]'.
slots[self.explicit_slot_start..]
.copy_from_slice(cache.explicit_slots());
epsilons.slots().apply(at, &mut slots[self.explicit_slot_start..]);
}
*matched_pid = Some(pid);
true
}
}
impl DFA {
/// Returns the anchored start state for matching any pattern in this DFA.
fn start(&self) -> StateID {
self.starts[0]
}
/// Returns the anchored start state for matching the given pattern. If
/// 'starts_for_each_pattern'
/// was not enabled, then this returns an error. If the given pattern is
/// not in this DFA, then `Ok(None)` is returned.
fn start_pattern(&self, pid: PatternID) -> Result<StateID, MatchError> {
if !self.config.get_starts_for_each_pattern() {
return Err(MatchError::unsupported_anchored(Anchored::Pattern(
pid,
)));
}
// 'starts' always has non-zero length. The first entry is always the
// anchored starting state for all patterns, and the following entries
// are optional and correspond to the anchored starting states for
// patterns at pid+1. Thus, starts.len()-1 corresponds to the total
// number of patterns that one can explicitly search for. (And it may
// be zero.)
Ok(self.starts.get(pid.one_more()).copied().unwrap_or(DEAD))
}
/// Returns the transition from the given state ID and byte of input. The
/// transition includes the next state ID, the slots that should be saved
/// and any conditional epsilon transitions that must be satisfied in order
/// to take this transition.
fn transition(&self, sid: StateID, byte: u8) -> Transition {
let offset = sid.as_usize() << self.stride2();
let class = self.classes.get(byte).as_usize();
self.table[offset + class]
}
/// Set the transition from the given state ID and byte of input to the
/// transition given.
fn set_transition(&mut self, sid: StateID, byte: u8, to: Transition) {
let offset = sid.as_usize() << self.stride2();
let class = self.classes.get(byte).as_usize();
self.table[offset + class] = to;
}
/// Return an iterator of "sparse" transitions for the given state ID.
/// "sparse" in this context means that consecutive transitions that are
/// equivalent are returned as one group, and transitions to the DEAD state
/// are ignored.
///
/// This winds up being useful for debug printing, since it's much terser
/// to display runs of equivalent transitions than the transition for every
/// possible byte value. Indeed, in practice, it's very common for runs
/// of equivalent transitions to appear.
fn sparse_transitions(&self, sid: StateID) -> SparseTransitionIter<'_> {
let start = sid.as_usize() << self.stride2();
let end = start + self.alphabet_len();
SparseTransitionIter {
it: self.table[start..end].iter().enumerate(),
cur: None,
}
}
/// Return the pattern epsilons for the given state ID.
///
/// If the given state ID does not correspond to a match state ID, then the
/// pattern epsilons returned is empty.
fn pattern_epsilons(&self, sid: StateID) -> PatternEpsilons {
let offset = sid.as_usize() << self.stride2();
PatternEpsilons(self.table[offset + self.pateps_offset].0)
}
/// Set the pattern epsilons for the given state ID.
fn set_pattern_epsilons(&mut self, sid: StateID, pateps: PatternEpsilons) {
let offset = sid.as_usize() << self.stride2();
self.table[offset + self.pateps_offset] = Transition(pateps.0);
}
/// Returns the state ID prior to the one given. This returns None if the
/// given ID is the first DFA state.
fn prev_state_id(&self, id: StateID) -> Option<StateID> {
if id == DEAD {
None
} else {
// CORRECTNESS: Since 'id' is not the first state, subtracting 1
// is always valid.
Some(StateID::new_unchecked(id.as_usize().checked_sub(1).unwrap()))
}
}
/// Returns the state ID of the last state in this DFA's transition table.
/// "last" in this context means the last state to appear in memory, i.e.,
/// the one with the greatest ID.
fn last_state_id(&self) -> StateID {
// CORRECTNESS: A DFA table is always non-empty since it always at
// least contains a DEAD state. Since every state has the same stride,
// we can just compute what the "next" state ID would have been and
// then subtract 1 from it.
StateID::new_unchecked(
(self.table.len() >> self.stride2()).checked_sub(1).unwrap(),
)
}
/// Move the transitions from 'id1' to 'id2' and vice versa.
///
/// WARNING: This does not update the rest of the transition table to have
/// transitions to 'id1' changed to 'id2' and vice versa. This merely moves
/// the states in memory.
pub(super) fn swap_states(&mut self, id1: StateID, id2: StateID) {
let o1 = id1.as_usize() << self.stride2();
let o2 = id2.as_usize() << self.stride2();
for b in 0..self.stride() {
self.table.swap(o1 + b, o2 + b);
}
}
/// Map all state IDs in this DFA (transition table + start states)
/// according to the closure given.
pub(super) fn remap(&mut self, map: impl Fn(StateID) -> StateID) {
for i in 0..self.state_len() {
let offset = i << self.stride2();
for b in 0..self.alphabet_len() {
let next = self.table[offset + b].state_id();
self.table[offset + b].set_state_id(map(next));
}
}
for i in 0..self.starts.len() {
self.starts[i] = map(self.starts[i]);
}
}
}
impl core::fmt::Debug for DFA {
fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
fn debug_state_transitions(
f: &mut core::fmt::Formatter,
dfa: &DFA,
sid: StateID,
) -> core::fmt::Result {
for (i, (start, end, trans)) in
dfa.sparse_transitions(sid).enumerate()
{
let next = trans.state_id();
if i > 0 {
write!(f, ", ")?;
}
if start == end {
write!(
f,
"{:?} => {:?}",
DebugByte(start),
next.as_usize(),
)?;
} else {
write!(
f,
"{:?}-{:?} => {:?}",
DebugByte(start),
DebugByte(end),
next.as_usize(),
)?;
}
if trans.match_wins() {
write!(f, " (MW)")?;
}
if !trans.epsilons().is_empty() {
write!(f, " ({:?})", trans.epsilons())?;
}
}
Ok(())
}
writeln!(f, "onepass::DFA(")?;
for index in 0..self.state_len() {
let sid = StateID::must(index);
let pateps = self.pattern_epsilons(sid);
if sid == DEAD {
write!(f, "D ")?;
} else if pateps.pattern_id().is_some() {
write!(f, "* ")?;
} else {
write!(f, " ")?;
}
write!(f, "{:06?}", sid.as_usize())?;
if !pateps.is_empty() {
write!(f, " ({:?})", pateps)?;
}
write!(f, ": ")?;
debug_state_transitions(f, self, sid)?;
write!(f, "\n")?;
}
writeln!(f, "")?;
for (i, &sid) in self.starts.iter().enumerate() {
if i == 0 {
writeln!(f, "START(ALL): {:?}", sid.as_usize())?;
} else {
writeln!(
f,
"START(pattern: {:?}): {:?}",
i - 1,
sid.as_usize(),
)?;
}
}
writeln!(f, "state length: {:?}", self.state_len())?;
writeln!(f, "pattern length: {:?}", self.pattern_len())?;
writeln!(f, ")")?;
Ok(())
}
}
/// An iterator over groups of consecutive equivalent transitions in a single
/// state.
#[derive(Debug)]
struct SparseTransitionIter<'a> {
it: core::iter::Enumerate<core::slice::Iter<'a, Transition>>,
cur: Option<(u8, u8, Transition)>,
}
impl<'a> Iterator for SparseTransitionIter<'a> {
type Item = (u8, u8, Transition);
fn next(&mut self) -> Option<(u8, u8, Transition)> {
while let Some((b, &trans)) = self.it.next() {
// Fine because we'll never have more than u8::MAX transitions in
// one state.
let b = b.as_u8();
let (prev_start, prev_end, prev_trans) = match self.cur {
Some(t) => t,
None => {
self.cur = Some((b, b, trans));
continue;
}
};
if prev_trans == trans {
self.cur = Some((prev_start, b, prev_trans));
} else {
self.cur = Some((b, b, trans));
if prev_trans.state_id() != DEAD {
return Some((prev_start, prev_end, prev_trans));
}
}
}
if let Some((start, end, trans)) = self.cur.take() {
if trans.state_id() != DEAD {
return Some((start, end, trans));
}
}
None
}
}
/// A cache represents mutable state that a one-pass [`DFA`] requires during a
/// search.
///
/// For a given one-pass DFA, its corresponding cache may be created either via
/// [`DFA::create_cache`], or via [`Cache::new`]. They are equivalent in every
/// way, except the former does not require explicitly importing `Cache`.
///
/// A particular `Cache` is coupled with the one-pass DFA from which it was
/// created. It may only be used with that one-pass DFA. A cache and its
/// allocations may be re-purposed via [`Cache::reset`], in which case, it can
/// only be used with the new one-pass DFA (and not the old one).
#[derive(Clone, Debug)]
pub struct Cache {
/// Scratch space used to store slots during a search. Basically, we use
/// the caller provided slots to store slots known when a match occurs.
/// But after a match occurs, we might continue a search but ultimately
/// fail to extend the match. When continuing the search, we need some
/// place to store candidate capture offsets without overwriting the slot
/// offsets recorded for the most recently seen match.
explicit_slots: Vec<Option<NonMaxUsize>>,
/// The number of slots in the caller-provided 'Captures' value for the
/// current search. This is always at most 'explicit_slots.len()', but
/// might be less than it, if the caller provided fewer slots to fill.
explicit_slot_len: usize,
}
impl Cache {
/// Create a new [`onepass::DFA`](DFA) cache.
///
/// A potentially more convenient routine to create a cache is
/// [`DFA::create_cache`], as it does not require also importing the
/// `Cache` type.
///
/// If you want to reuse the returned `Cache` with some other one-pass DFA,
/// then you must call [`Cache::reset`] with the desired one-pass DFA.
pub fn new(re: &DFA) -> Cache {
let mut cache = Cache { explicit_slots: vec![], explicit_slot_len: 0 };
cache.reset(re);
cache
}
/// Reset this cache such that it can be used for searching with a
/// different [`onepass::DFA`](DFA).
///
/// A cache reset permits reusing memory already allocated in this cache
/// with a different one-pass DFA.
///
/// # Example
///
/// This shows how to re-purpose a cache for use with a different one-pass
/// DFA.
///
/// ```
/// # if cfg!(miri) { return Ok(()); } // miri takes too long
/// use regex_automata::{dfa::onepass::DFA, Match};
///
/// let re1 = DFA::new(r"\w")?;
/// let re2 = DFA::new(r"\W")?;
/// let mut caps1 = re1.create_captures();
/// let mut caps2 = re2.create_captures();
///
/// let mut cache = re1.create_cache();
/// assert_eq!(
/// Some(Match::must(0, 0..2)),
/// { re1.captures(&mut cache, "Δ", &mut caps1); caps1.get_match() },
/// );
///
/// // Using 'cache' with re2 is not allowed. It may result in panics or
/// // incorrect results. In order to re-purpose the cache, we must reset
/// // it with the one-pass DFA we'd like to use it with.
/// //
/// // Similarly, after this reset, using the cache with 're1' is also not
/// // allowed.
/// re2.reset_cache(&mut cache);
/// assert_eq!(
/// Some(Match::must(0, 0..3)),
/// { re2.captures(&mut cache, "☃", &mut caps2); caps2.get_match() },
/// );
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
pub fn reset(&mut self, re: &DFA) {
let explicit_slot_len = re.get_nfa().group_info().explicit_slot_len();
self.explicit_slots.resize(explicit_slot_len, None);
self.explicit_slot_len = explicit_slot_len;
}
/// Returns the heap memory usage, in bytes, of this cache.
///
/// This does **not** include the stack size used up by this cache. To
/// compute that, use `std::mem::size_of::<Cache>()`.
pub fn memory_usage(&self) -> usize {
self.explicit_slots.len() * core::mem::size_of::<Option<NonMaxUsize>>()
}
fn explicit_slots(&mut self) -> &mut [Option<NonMaxUsize>] {
&mut self.explicit_slots[..self.explicit_slot_len]
}
fn setup_search(&mut self, explicit_slot_len: usize) {
self.explicit_slot_len = explicit_slot_len;
}
}
/// Represents a single transition in a one-pass DFA.
///
/// The high 24 bits corresponds to the state ID. The low 48 bits corresponds
/// to the transition epsilons, which contains the slots that should be saved
/// when this transition is followed and the conditional epsilon transitions
/// that must be satisfied in order to follow this transition.
#[derive(Clone, Copy, Eq, PartialEq)]
struct Transition(u64);
impl Transition {
const STATE_ID_BITS: u64 = 21;
const STATE_ID_SHIFT: u64 = 64 - Transition::STATE_ID_BITS;
const STATE_ID_LIMIT: u64 = 1 << Transition::STATE_ID_BITS;
const MATCH_WINS_SHIFT: u64 = 64 - (Transition::STATE_ID_BITS + 1);
const INFO_MASK: u64 = 0x000003FF_FFFFFFFF;
/// Return a new transition to the given state ID with the given epsilons.
fn new(match_wins: bool, sid: StateID, epsilons: Epsilons) -> Transition {
let match_wins =
if match_wins { 1 << Transition::MATCH_WINS_SHIFT } else { 0 };
let sid = sid.as_u64() << Transition::STATE_ID_SHIFT;
Transition(sid | match_wins | epsilons.0)
}
/// Returns true if and only if this transition points to the DEAD state.
fn is_dead(self) -> bool {
self.state_id() == DEAD
}
/// Return whether this transition has a "match wins" property.
///
/// When a transition has this property, it means that if a match has been
/// found and the search uses leftmost-first semantics, then that match
/// should be returned immediately instead of continuing on.
///
/// The "match wins" name comes from RE2, which uses a pretty much
/// identical mechanism for implementing leftmost-first semantics.
fn match_wins(&self) -> bool {
(self.0 >> Transition::MATCH_WINS_SHIFT & 1) == 1
}
/// Return the "next" state ID that this transition points to.
fn state_id(&self) -> StateID {
// OK because a Transition has a valid StateID in its upper bits by
// construction. The cast to usize is also correct, even on 16-bit
// targets because, again, we know the upper bits is a valid StateID,
// which can never overflow usize on any supported target.
StateID::new_unchecked(
(self.0 >> Transition::STATE_ID_SHIFT).as_usize(),
)
}
/// Set the "next" state ID in this transition.
fn set_state_id(&mut self, sid: StateID) {
*self = Transition::new(self.match_wins(), sid, self.epsilons());
}
/// Return the epsilons embedded in this transition.
fn epsilons(&self) -> Epsilons {
Epsilons(self.0 & Transition::INFO_MASK)
}
}
impl core::fmt::Debug for Transition {
fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
if self.is_dead() {
return write!(f, "0");
}
write!(f, "{}", self.state_id().as_usize())?;
if self.match_wins() {
write!(f, "-MW")?;
}
if !self.epsilons().is_empty() {
write!(f, "-{:?}", self.epsilons())?;
}
Ok(())
}
}
/// A representation of a match state's pattern ID along with the epsilons for
/// when a match occurs.
///
/// A match state in a one-pass DFA, unlike in a more general DFA, has exactly
/// one pattern ID. If it had more, then the original NFA would not have been
/// one-pass.
///
/// The "epsilons" part of this corresponds to what was found in the epsilon
/// transitions between the transition taken in the last byte of input and the
/// ultimate match state. This might include saving slots and/or conditional
/// epsilon transitions that must be satisfied before one can report the match.
///
/// Technically, every state has room for a 'PatternEpsilons', but it is only
/// ever non-empty for match states.
#[derive(Clone, Copy)]
struct PatternEpsilons(u64);
impl PatternEpsilons {
const PATTERN_ID_BITS: u64 = 22;
const PATTERN_ID_SHIFT: u64 = 64 - PatternEpsilons::PATTERN_ID_BITS;
// A sentinel value indicating that this is not a match state. We don't
// use 0 since 0 is a valid pattern ID.
const PATTERN_ID_NONE: u64 = 0x00000000_003FFFFF;
const PATTERN_ID_LIMIT: u64 = PatternEpsilons::PATTERN_ID_NONE;
const PATTERN_ID_MASK: u64 = 0xFFFFFC00_00000000;
const EPSILONS_MASK: u64 = 0x000003FF_FFFFFFFF;
/// Return a new empty pattern epsilons that has no pattern ID and has no
/// epsilons. This is suitable for non-match states.
fn empty() -> PatternEpsilons {
PatternEpsilons(
PatternEpsilons::PATTERN_ID_NONE
<< PatternEpsilons::PATTERN_ID_SHIFT,
)
}
/// Whether this pattern epsilons is empty or not. It's empty when it has
/// no pattern ID and an empty epsilons.
fn is_empty(self) -> bool {
self.pattern_id().is_none() && self.epsilons().is_empty()
}
/// Return the pattern ID in this pattern epsilons if one exists.
fn pattern_id(self) -> Option<PatternID> {
let pid = self.0 >> PatternEpsilons::PATTERN_ID_SHIFT;
if pid == PatternEpsilons::PATTERN_ID_LIMIT {
None
} else {
Some(PatternID::new_unchecked(pid.as_usize()))
}
}
/// Returns the pattern ID without checking whether it's valid. If this is
/// called and there is no pattern ID in this `PatternEpsilons`, then this
/// will likely produce an incorrect result or possibly even a panic or
/// an overflow. But safety will not be violated.
///
/// This is useful when you know a particular state is a match state. If
/// it's a match state, then it must have a pattern ID.
fn pattern_id_unchecked(self) -> PatternID {
let pid = self.0 >> PatternEpsilons::PATTERN_ID_SHIFT;
PatternID::new_unchecked(pid.as_usize())
}
/// Return a new pattern epsilons with the given pattern ID, but the same
/// epsilons.
fn set_pattern_id(self, pid: PatternID) -> PatternEpsilons {
PatternEpsilons(
(pid.as_u64() << PatternEpsilons::PATTERN_ID_SHIFT)
| (self.0 & PatternEpsilons::EPSILONS_MASK),
)
}
/// Return the epsilons part of this pattern epsilons.
fn epsilons(self) -> Epsilons {
Epsilons(self.0 & PatternEpsilons::EPSILONS_MASK)
}
/// Return a new pattern epsilons with the given epsilons, but the same
/// pattern ID.
fn set_epsilons(self, epsilons: Epsilons) -> PatternEpsilons {
PatternEpsilons(
(self.0 & PatternEpsilons::PATTERN_ID_MASK)
| u64::from(epsilons.0),
)
}
}
impl core::fmt::Debug for PatternEpsilons {
fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
if self.is_empty() {
return write!(f, "N/A");
}
if let Some(pid) = self.pattern_id() {
write!(f, "{}", pid.as_usize())?;
}
if !self.epsilons().is_empty() {
if self.pattern_id().is_some() {
write!(f, "/")?;
}
write!(f, "{:?}", self.epsilons())?;
}
Ok(())
}
}
/// Epsilons represents all of the NFA epsilons transitions that went into a
/// single transition in a single DFA state. In this case, it only represents
/// the epsilon transitions that have some kind of non-consuming side effect:
/// either the transition requires storing the current position of the search
/// into a slot, or the transition is conditional and requires the current
/// position in the input to satisfy an assertion before the transition may be
/// taken.
///
/// This folds the cumulative effect of a group of NFA states (all connected
/// by epsilon transitions) down into a single set of bits. While these bits
/// can represent all possible conditional epsilon transitions, it only permits
/// storing up to a somewhat small number of slots.
///
/// Epsilons is represented as a 42-bit integer. For example, it is packed into
/// the lower 42 bits of a `Transition`. (Where the high 22 bits contains a
/// `StateID` and a special "match wins" property.)
#[derive(Clone, Copy)]
struct Epsilons(u64);
impl Epsilons {
const SLOT_MASK: u64 = 0x000003FF_FFFFFC00;
const SLOT_SHIFT: u64 = 10;
const LOOK_MASK: u64 = 0x00000000_000003FF;
/// Create a new empty epsilons. It has no slots and no assertions that
/// need to be satisfied.
fn empty() -> Epsilons {
Epsilons(0)
}
/// Returns true if this epsilons contains no slots and no assertions.
fn is_empty(self) -> bool {
self.0 == 0
}
/// Returns the slot epsilon transitions.
fn slots(self) -> Slots {
Slots((self.0 >> Epsilons::SLOT_SHIFT).low_u32())
}
/// Set the slot epsilon transitions.
fn set_slots(self, slots: Slots) -> Epsilons {
Epsilons(
(u64::from(slots.0) << Epsilons::SLOT_SHIFT)
| (self.0 & Epsilons::LOOK_MASK),
)
}
/// Return the set of look-around assertions in these epsilon transitions.
fn looks(self) -> LookSet {
LookSet { bits: (self.0 & Epsilons::LOOK_MASK).low_u16() }
}
/// Set the look-around assertions on these epsilon transitions.
fn set_looks(self, look_set: LookSet) -> Epsilons {
Epsilons((self.0 & Epsilons::SLOT_MASK) | u64::from(look_set.bits))
}
}
impl core::fmt::Debug for Epsilons {
fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
let mut wrote = false;
if !self.slots().is_empty() {
write!(f, "{:?}", self.slots())?;
wrote = true;
}
if !self.looks().is_empty() {
if wrote {
write!(f, "/")?;
}
write!(f, "{:?}", self.looks())?;
wrote = true;
}
if !wrote {
write!(f, "N/A")?;
}
Ok(())
}
}
/// The set of epsilon transitions indicating that the current position in a
/// search should be saved to a slot.
///
/// This *only* represents explicit slots. So for example, the pattern
/// `[a-z]+([0-9]+)([a-z]+)` has:
///
/// * 3 capturing groups, thus 6 slots.
/// * 1 implicit capturing group, thus 2 implicit slots.
/// * 2 explicit capturing groups, thus 4 explicit slots.
///
/// While implicit slots are represented by epsilon transitions in an NFA, we
/// do not explicitly represent them here. Instead, implicit slots are assumed
/// to be present and handled automatically in the search code. Therefore,
/// that means we only need to represent explicit slots in our epsilon
/// transitions.
///
/// Its representation is a bit set. The bit 'i' is set if and only if there
/// exists an explicit slot at index 'c', where 'c = (#patterns * 2) + i'. That
/// is, the bit 'i' corresponds to the first explicit slot and the first
/// explicit slot appears immediately following the last implicit slot. (If
/// this is confusing, see `GroupInfo` for more details on how slots works.)
///
/// A single `Slots` represents all the active slots in a sub-graph of an NFA,
/// where all the states are connected by epsilon transitions. In effect, when
/// traversing the one-pass DFA during a search, all slots set in a particular
/// transition must be captured by recording the current search position.
///
/// The API of `Slots` requires the caller to handle the explicit slot offset.
/// That is, a `Slots` doesn't know where the explicit slots start for a
/// particular NFA. Thus, if the callers see's the bit 'i' is set, then they
/// need to do the arithmetic above to find 'c', which is the real actual slot
/// index in the corresponding NFA.
#[derive(Clone, Copy)]
struct Slots(u32);
impl Slots {
const LIMIT: usize = 32;
/// Insert the slot at the given bit index.
fn insert(self, slot: usize) -> Slots {
debug_assert!(slot < Slots::LIMIT);
Slots(self.0 | (1 << slot.as_u32()))
}
/// Remove the slot at the given bit index.
fn remove(self, slot: usize) -> Slots {
debug_assert!(slot < Slots::LIMIT);
Slots(self.0 & !(1 << slot.as_u32()))
}
/// Returns true if and only if this set contains no slots.
fn is_empty(self) -> bool {
self.0 == 0
}
/// Returns an iterator over all of the set bits in this set.
fn iter(self) -> SlotsIter {
SlotsIter { slots: self }
}
/// For the position `at` in the current haystack, copy it to
/// `caller_explicit_slots` for all slots that are in this set.
///
/// Callers may pass a slice of any length. Slots in this set bigger than
/// the length of the given explicit slots are simply skipped.
///
/// The slice *must* correspond only to the explicit slots and the first
/// element of the slice must always correspond to the first explicit slot
/// in the corresponding NFA.
fn apply(
self,
at: usize,
caller_explicit_slots: &mut [Option<NonMaxUsize>],
) {
if self.is_empty() {
return;
}
let at = NonMaxUsize::new(at);
for slot in self.iter() {
if slot >= caller_explicit_slots.len() {
break;
}
caller_explicit_slots[slot] = at;
}
}
}
impl core::fmt::Debug for Slots {
fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
write!(f, "S")?;
for slot in self.iter() {
write!(f, "-{:?}", slot)?;
}
Ok(())
}
}
/// An iterator over all of the bits set in a slot set.
///
/// This returns the bit index that is set, so callers may need to offset it
/// to get the actual NFA slot index.
#[derive(Debug)]
struct SlotsIter {
slots: Slots,
}
impl Iterator for SlotsIter {
type Item = usize;
fn next(&mut self) -> Option<usize> {
// Number of zeroes here is always <= u8::MAX, and so fits in a usize.
let slot = self.slots.0.trailing_zeros().as_usize();
if slot >= Slots::LIMIT {
return None;
}
self.slots = self.slots.remove(slot);
Some(slot)
}
}
/// An error that occurred during the construction of a one-pass DFA.
///
/// This error does not provide many introspection capabilities. There are
/// generally only two things you can do with it:
///
/// * Obtain a human readable message via its `std::fmt::Display` impl.
/// * Access an underlying [`thompson::BuildError`] type from its `source`
/// method via the `std::error::Error` trait. This error only occurs when using
/// convenience routines for building a one-pass DFA directly from a pattern
/// string.
///
/// When the `std` feature is enabled, this implements the `std::error::Error`
/// trait.
#[derive(Clone, Debug)]
pub struct BuildError {
kind: BuildErrorKind,
}
/// The kind of error that occurred during the construction of a one-pass DFA.
#[derive(Clone, Debug)]
enum BuildErrorKind {
NFA(crate::nfa::thompson::BuildError),
Word(UnicodeWordBoundaryError),
TooManyStates { limit: u64 },
TooManyPatterns { limit: u64 },
UnsupportedLook { look: Look },
ExceededSizeLimit { limit: usize },
NotOnePass { msg: &'static str },
}
impl BuildError {
fn nfa(err: crate::nfa::thompson::BuildError) -> BuildError {
BuildError { kind: BuildErrorKind::NFA(err) }
}
fn word(err: UnicodeWordBoundaryError) -> BuildError {
BuildError { kind: BuildErrorKind::Word(err) }
}
fn too_many_states(limit: u64) -> BuildError {
BuildError { kind: BuildErrorKind::TooManyStates { limit } }
}
fn too_many_patterns(limit: u64) -> BuildError {
BuildError { kind: BuildErrorKind::TooManyPatterns { limit } }
}
fn unsupported_look(look: Look) -> BuildError {
BuildError { kind: BuildErrorKind::UnsupportedLook { look } }
}
fn exceeded_size_limit(limit: usize) -> BuildError {
BuildError { kind: BuildErrorKind::ExceededSizeLimit { limit } }
}
fn not_one_pass(msg: &'static str) -> BuildError {
BuildError { kind: BuildErrorKind::NotOnePass { msg } }
}
}
#[cfg(feature = "std")]
impl std::error::Error for BuildError {
fn source(&self) -> Option<&(dyn std::error::Error + 'static)> {
use self::BuildErrorKind::*;
match self.kind {
NFA(ref err) => Some(err),
Word(ref err) => Some(err),
_ => None,
}
}
}
impl core::fmt::Display for BuildError {
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
use self::BuildErrorKind::*;
match self.kind {
NFA(_) => write!(f, "error building NFA"),
Word(_) => write!(f, "NFA contains Unicode word boundary"),
TooManyStates { limit } => write!(
f,
"one-pass DFA exceeded a limit of {:?} for number of states",
limit,
),
TooManyPatterns { limit } => write!(
f,
"one-pass DFA exceeded a limit of {:?} for number of patterns",
limit,
),
UnsupportedLook { look } => write!(
f,
"one-pass DFA does not support the {:?} assertion",
look,
),
ExceededSizeLimit { limit } => write!(
f,
"one-pass DFA exceeded size limit of {:?} during building",
limit,
),
NotOnePass { msg } => write!(
f,
"one-pass DFA could not be built because \
pattern is not one-pass: {}",
msg,
),
}
}
}
#[cfg(all(test, feature = "syntax"))]
mod tests {
use alloc::string::ToString;
use super::*;
#[test]
fn fail_conflicting_transition() {
let predicate = |err: &str| err.contains("conflicting transition");
let err = DFA::new(r"a*[ab]").unwrap_err().to_string();
assert!(predicate(&err), "{}", err);
}
#[test]
fn fail_multiple_epsilon() {
let predicate = |err: &str| {
err.contains("multiple epsilon transitions to same state")
};
let err = DFA::new(r"(^|$)a").unwrap_err().to_string();
assert!(predicate(&err), "{}", err);
}
#[test]
fn fail_multiple_match() {
let predicate = |err: &str| {
err.contains("multiple epsilon transitions to match state")
};
let err = DFA::new_many(&[r"^", r"$"]).unwrap_err().to_string();
assert!(predicate(&err), "{}", err);
}
// This test is meant to build a one-pass regex with the maximum number of
// possible slots.
//
// NOTE: Remember that the slot limit only applies to explicit capturing
// groups. Any number of implicit capturing groups is supported (up to the
// maximum number of supported patterns), since implicit groups are handled
// by the search loop itself.
#[test]
fn max_slots() {
// One too many...
let pat = r"(a)(b)(c)(d)(e)(f)(g)(h)(i)(j)(k)(l)(m)(n)(o)(p)(q)";
assert!(DFA::new(pat).is_err());
// Just right.
let pat = r"(a)(b)(c)(d)(e)(f)(g)(h)(i)(j)(k)(l)(m)(n)(o)(p)";
assert!(DFA::new(pat).is_ok());
}
// This test ensures that the one-pass DFA works with all look-around
// assertions that we expect it to work with.
//
// The utility of this test is that each one-pass transition has a small
// amount of space to store look-around assertions. Currently, there is
// logic in the one-pass constructor to ensure there aren't more than ten
// possible assertions. And indeed, there are only ten possible assertions
// (at time of writing), so this is okay. But conceivably, more assertions
// could be added. So we check that things at least work with what we
// expect them to work with.
#[test]
fn assertions() {
// haystack anchors
assert!(DFA::new(r"^").is_ok());
assert!(DFA::new(r"$").is_ok());
// line anchors
assert!(DFA::new(r"(?m)^").is_ok());
assert!(DFA::new(r"(?m)$").is_ok());
assert!(DFA::new(r"(?Rm)^").is_ok());
assert!(DFA::new(r"(?Rm)$").is_ok());
// word boundaries
if cfg!(feature = "unicode-word-boundary") {
assert!(DFA::new(r"\b").is_ok());
assert!(DFA::new(r"\B").is_ok());
}
assert!(DFA::new(r"(?-u)\b").is_ok());
assert!(DFA::new(r"(?-u)\B").is_ok());
}
#[cfg(not(miri))] // takes too long on miri
#[test]
fn is_one_pass() {
use crate::util::syntax;
assert!(DFA::new(r"a*b").is_ok());
if cfg!(feature = "unicode-perl") {
assert!(DFA::new(r"\w").is_ok());
}
assert!(DFA::new(r"(?-u)\w*\s").is_ok());
assert!(DFA::new(r"(?s:.)*?").is_ok());
assert!(DFA::builder()
.syntax(syntax::Config::new().utf8(false))
.build(r"(?s-u:.)*?")
.is_ok());
}
#[test]
fn is_not_one_pass() {
assert!(DFA::new(r"a*a").is_err());
assert!(DFA::new(r"(?s-u:.)*?").is_err());
assert!(DFA::new(r"(?s:.)*?a").is_err());
}
#[cfg(not(miri))]
#[test]
fn is_not_one_pass_bigger() {
assert!(DFA::new(r"\w*\s").is_err());
}
}