1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
use crate::{
    hybrid::{
        dfa::{Cache, OverlappingState, DFA},
        id::LazyStateID,
    },
    util::{
        prefilter::Prefilter,
        search::{HalfMatch, Input, MatchError, Span},
    },
};

#[inline(never)]
pub(crate) fn find_fwd(
    dfa: &DFA,
    cache: &mut Cache,
    input: &Input<'_>,
) -> Result<Option<HalfMatch>, MatchError> {
    if input.is_done() {
        return Ok(None);
    }
    let pre = if input.get_anchored().is_anchored() {
        None
    } else {
        dfa.get_config().get_prefilter()
    };
    // So what we do here is specialize four different versions of 'find_fwd':
    // one for each of the combinations for 'has prefilter' and 'is earliest
    // search'. The reason for doing this is that both of these things require
    // branches and special handling in some code that can be very hot,
    // and shaving off as much as we can when we don't need it tends to be
    // beneficial in ad hoc benchmarks. To see these differences, you often
    // need a query with a high match count. In other words, specializing these
    // four routines *tends* to help latency more than throughput.
    if pre.is_some() {
        if input.get_earliest() {
            find_fwd_imp(dfa, cache, input, pre, true)
        } else {
            find_fwd_imp(dfa, cache, input, pre, false)
        }
    } else {
        if input.get_earliest() {
            find_fwd_imp(dfa, cache, input, None, true)
        } else {
            find_fwd_imp(dfa, cache, input, None, false)
        }
    }
}

#[cfg_attr(feature = "perf-inline", inline(always))]
fn find_fwd_imp(
    dfa: &DFA,
    cache: &mut Cache,
    input: &Input<'_>,
    pre: Option<&'_ Prefilter>,
    earliest: bool,
) -> Result<Option<HalfMatch>, MatchError> {
    // See 'prefilter_restart' docs for explanation.
    let universal_start = dfa.get_nfa().look_set_prefix_any().is_empty();
    let mut mat = None;
    let mut sid = init_fwd(dfa, cache, input)?;
    let mut at = input.start();
    // This could just be a closure, but then I think it would be unsound
    // because it would need to be safe to invoke. This way, the lack of safety
    // is clearer in the code below.
    macro_rules! next_unchecked {
        ($sid:expr, $at:expr) => {{
            let byte = *input.haystack().get_unchecked($at);
            dfa.next_state_untagged_unchecked(cache, $sid, byte)
        }};
    }

    if let Some(ref pre) = pre {
        let span = Span::from(at..input.end());
        match pre.find(input.haystack(), span) {
            None => return Ok(mat),
            Some(ref span) => {
                at = span.start;
                if !universal_start {
                    sid = prefilter_restart(dfa, cache, &input, at)?;
                }
            }
        }
    }
    cache.search_start(at);
    while at < input.end() {
        if sid.is_tagged() {
            cache.search_update(at);
            sid = dfa
                .next_state(cache, sid, input.haystack()[at])
                .map_err(|_| gave_up(at))?;
        } else {
            // SAFETY: There are two safety invariants we need to uphold
            // here in the loops below: that 'sid' and 'prev_sid' are valid
            // state IDs for this DFA, and that 'at' is a valid index into
            // 'haystack'. For the former, we rely on the invariant that
            // next_state* and start_state_forward always returns a valid state
            // ID (given a valid state ID in the former case), and that we are
            // only at this place in the code if 'sid' is untagged. Moreover,
            // every call to next_state_untagged_unchecked below is guarded by
            // a check that sid is untagged. For the latter safety invariant,
            // we always guard unchecked access with a check that 'at' is less
            // than 'end', where 'end <= haystack.len()'. In the unrolled loop
            // below, we ensure that 'at' is always in bounds.
            //
            // PERF: For justification of omitting bounds checks, it gives us a
            // ~10% bump in search time. This was used for a benchmark:
            //
            //     regex-cli find hybrid dfa @bigfile '(?m)^.+$' -UBb
            //
            // PERF: For justification for the loop unrolling, we use a few
            // different tests:
            //
            //     regex-cli find hybrid dfa @$bigfile '\w{50}' -UBb
            //     regex-cli find hybrid dfa @$bigfile '(?m)^.+$' -UBb
            //     regex-cli find hybrid dfa @$bigfile 'ZQZQZQZQ' -UBb
            //
            // And there are three different configurations:
            //
            //     nounroll: this entire 'else' block vanishes and we just
            //               always use 'dfa.next_state(..)'.
            //      unroll1: just the outer loop below
            //      unroll2: just the inner loop below
            //      unroll3: both the outer and inner loops below
            //
            // This results in a matrix of timings for each of the above
            // regexes with each of the above unrolling configurations:
            //
            //              '\w{50}'   '(?m)^.+$'   'ZQZQZQZQ'
            //   nounroll   1.51s      2.34s        1.51s
            //    unroll1   1.53s      2.32s        1.56s
            //    unroll2   2.22s      1.50s        0.61s
            //    unroll3   1.67s      1.45s        0.61s
            //
            // Ideally we'd be able to find a configuration that yields the
            // best time for all regexes, but alas we settle for unroll3 that
            // gives us *almost* the best for '\w{50}' and the best for the
            // other two regexes.
            //
            // So what exactly is going on here? The first unrolling (grouping
            // together runs of untagged transitions) specifically targets
            // our choice of representation. The second unrolling (grouping
            // together runs of self-transitions) specifically targets a common
            // DFA topology. Let's dig in a little bit by looking at our
            // regexes:
            //
            // '\w{50}': This regex spends a lot of time outside of the DFA's
            // start state matching some part of the '\w' repetition. This
            // means that it's a bit of a worst case for loop unrolling that
            // targets self-transitions since the self-transitions in '\w{50}'
            // are not particularly active for this haystack. However, the
            // first unrolling (grouping together untagged transitions)
            // does apply quite well here since very few transitions hit
            // match/dead/quit/unknown states. It is however worth mentioning
            // that if start states are configured to be tagged (which you
            // typically want to do if you have a prefilter), then this regex
            // actually slows way down because it is constantly ping-ponging
            // out of the unrolled loop and into the handling of a tagged start
            // state below. But when start states aren't tagged, the unrolled
            // loop stays hot. (This is why it's imperative that start state
            // tagging be disabled when there isn't a prefilter!)
            //
            // '(?m)^.+$': There are two important aspects of this regex: 1)
            // on this haystack, its match count is very high, much higher
            // than the other two regex and 2) it spends the vast majority
            // of its time matching '.+'. Since Unicode mode is disabled,
            // this corresponds to repeatedly following self transitions for
            // the vast majority of the input. This does benefit from the
            // untagged unrolling since most of the transitions will be to
            // untagged states, but the untagged unrolling does more work than
            // what is actually required. Namely, it has to keep track of the
            // previous and next state IDs, which I guess requires a bit more
            // shuffling. This is supported by the fact that nounroll+unroll1
            // are both slower than unroll2+unroll3, where the latter has a
            // loop unrolling that specifically targets self-transitions.
            //
            // 'ZQZQZQZQ': This one is very similar to '(?m)^.+$' because it
            // spends the vast majority of its time in self-transitions for
            // the (implicit) unanchored prefix. The main difference with
            // '(?m)^.+$' is that it has a much lower match count. So there
            // isn't much time spent in the overhead of reporting matches. This
            // is the primary explainer in the perf difference here. We include
            // this regex and the former to make sure we have comparison points
            // with high and low match counts.
            //
            // NOTE: I used 'OpenSubtitles2018.raw.sample.en' for 'bigfile'.
            //
            // NOTE: In a follow-up, it turns out that the "inner" loop
            // mentioned above was a pretty big pessimization in some other
            // cases. Namely, it resulted in too much ping-ponging into and out
            // of the loop, which resulted in nearly ~2x regressions in search
            // time when compared to the originally lazy DFA in the regex crate.
            // So I've removed the second loop unrolling that targets the
            // self-transition case.
            let mut prev_sid = sid;
            while at < input.end() {
                prev_sid = unsafe { next_unchecked!(sid, at) };
                if prev_sid.is_tagged() || at + 3 >= input.end() {
                    core::mem::swap(&mut prev_sid, &mut sid);
                    break;
                }
                at += 1;

                sid = unsafe { next_unchecked!(prev_sid, at) };
                if sid.is_tagged() {
                    break;
                }
                at += 1;

                prev_sid = unsafe { next_unchecked!(sid, at) };
                if prev_sid.is_tagged() {
                    core::mem::swap(&mut prev_sid, &mut sid);
                    break;
                }
                at += 1;

                sid = unsafe { next_unchecked!(prev_sid, at) };
                if sid.is_tagged() {
                    break;
                }
                at += 1;
            }
            // If we quit out of the code above with an unknown state ID at
            // any point, then we need to re-compute that transition using
            // 'next_state', which will do NFA powerset construction for us.
            if sid.is_unknown() {
                cache.search_update(at);
                sid = dfa
                    .next_state(cache, prev_sid, input.haystack()[at])
                    .map_err(|_| gave_up(at))?;
            }
        }
        if sid.is_tagged() {
            if sid.is_start() {
                if let Some(ref pre) = pre {
                    let span = Span::from(at..input.end());
                    match pre.find(input.haystack(), span) {
                        None => {
                            cache.search_finish(span.end);
                            return Ok(mat);
                        }
                        Some(ref span) => {
                            // We want to skip any update to 'at' below
                            // at the end of this iteration and just
                            // jump immediately back to the next state
                            // transition at the leading position of the
                            // candidate match.
                            //
                            // ... but only if we actually made progress
                            // with our prefilter, otherwise if the start
                            // state has a self-loop, we can get stuck.
                            if span.start > at {
                                at = span.start;
                                if !universal_start {
                                    sid = prefilter_restart(
                                        dfa, cache, &input, at,
                                    )?;
                                }
                                continue;
                            }
                        }
                    }
                }
            } else if sid.is_match() {
                let pattern = dfa.match_pattern(cache, sid, 0);
                // Since slice ranges are inclusive at the beginning and
                // exclusive at the end, and since forward searches report
                // the end, we can return 'at' as-is. This only works because
                // matches are delayed by 1 byte. So by the time we observe a
                // match, 'at' has already been set to 1 byte past the actual
                // match location, which is precisely the exclusive ending
                // bound of the match.
                mat = Some(HalfMatch::new(pattern, at));
                if earliest {
                    cache.search_finish(at);
                    return Ok(mat);
                }
            } else if sid.is_dead() {
                cache.search_finish(at);
                return Ok(mat);
            } else if sid.is_quit() {
                cache.search_finish(at);
                return Err(MatchError::quit(input.haystack()[at], at));
            } else {
                debug_assert!(sid.is_unknown());
                unreachable!("sid being unknown is a bug");
            }
        }
        at += 1;
    }
    eoi_fwd(dfa, cache, input, &mut sid, &mut mat)?;
    cache.search_finish(input.end());
    Ok(mat)
}

#[inline(never)]
pub(crate) fn find_rev(
    dfa: &DFA,
    cache: &mut Cache,
    input: &Input<'_>,
) -> Result<Option<HalfMatch>, MatchError> {
    if input.is_done() {
        return Ok(None);
    }
    if input.get_earliest() {
        find_rev_imp(dfa, cache, input, true)
    } else {
        find_rev_imp(dfa, cache, input, false)
    }
}

#[cfg_attr(feature = "perf-inline", inline(always))]
fn find_rev_imp(
    dfa: &DFA,
    cache: &mut Cache,
    input: &Input<'_>,
    earliest: bool,
) -> Result<Option<HalfMatch>, MatchError> {
    let mut mat = None;
    let mut sid = init_rev(dfa, cache, input)?;
    // In reverse search, the loop below can't handle the case of searching an
    // empty slice. Ideally we could write something congruent to the forward
    // search, i.e., 'while at >= start', but 'start' might be 0. Since we use
    // an unsigned offset, 'at >= 0' is trivially always true. We could avoid
    // this extra case handling by using a signed offset, but Rust makes it
    // annoying to do. So... We just handle the empty case separately.
    if input.start() == input.end() {
        eoi_rev(dfa, cache, input, &mut sid, &mut mat)?;
        return Ok(mat);
    }

    let mut at = input.end() - 1;
    macro_rules! next_unchecked {
        ($sid:expr, $at:expr) => {{
            let byte = *input.haystack().get_unchecked($at);
            dfa.next_state_untagged_unchecked(cache, $sid, byte)
        }};
    }
    cache.search_start(at);
    loop {
        if sid.is_tagged() {
            cache.search_update(at);
            sid = dfa
                .next_state(cache, sid, input.haystack()[at])
                .map_err(|_| gave_up(at))?;
        } else {
            // SAFETY: See comments in 'find_fwd' for a safety argument.
            //
            // PERF: The comments in 'find_fwd' also provide a justification
            // from a performance perspective as to 1) why we elide bounds
            // checks and 2) why we do a specialized version of unrolling
            // below. The reverse search does have a slightly different
            // consideration in that most reverse searches tend to be
            // anchored and on shorter haystacks. However, this still makes a
            // difference. Take this command for example:
            //
            //     regex-cli find hybrid regex @$bigfile '(?m)^.+$' -UBb
            //
            // (Notice that we use 'find hybrid regex', not 'find hybrid dfa'
            // like in the justification for the forward direction. The 'regex'
            // sub-command will find start-of-match and thus run the reverse
            // direction.)
            //
            // Without unrolling below, the above command takes around 3.76s.
            // But with the unrolling below, we get down to 2.55s. If we keep
            // the unrolling but add in bounds checks, then we get 2.86s.
            //
            // NOTE: I used 'OpenSubtitles2018.raw.sample.en' for 'bigfile'.
            let mut prev_sid = sid;
            while at >= input.start() {
                prev_sid = unsafe { next_unchecked!(sid, at) };
                if prev_sid.is_tagged()
                    || at <= input.start().saturating_add(3)
                {
                    core::mem::swap(&mut prev_sid, &mut sid);
                    break;
                }
                at -= 1;

                sid = unsafe { next_unchecked!(prev_sid, at) };
                if sid.is_tagged() {
                    break;
                }
                at -= 1;

                prev_sid = unsafe { next_unchecked!(sid, at) };
                if prev_sid.is_tagged() {
                    core::mem::swap(&mut prev_sid, &mut sid);
                    break;
                }
                at -= 1;

                sid = unsafe { next_unchecked!(prev_sid, at) };
                if sid.is_tagged() {
                    break;
                }
                at -= 1;
            }
            // If we quit out of the code above with an unknown state ID at
            // any point, then we need to re-compute that transition using
            // 'next_state', which will do NFA powerset construction for us.
            if sid.is_unknown() {
                cache.search_update(at);
                sid = dfa
                    .next_state(cache, prev_sid, input.haystack()[at])
                    .map_err(|_| gave_up(at))?;
            }
        }
        if sid.is_tagged() {
            if sid.is_start() {
                // do nothing
            } else if sid.is_match() {
                let pattern = dfa.match_pattern(cache, sid, 0);
                // Since reverse searches report the beginning of a match
                // and the beginning is inclusive (not exclusive like the
                // end of a match), we add 1 to make it inclusive.
                mat = Some(HalfMatch::new(pattern, at + 1));
                if earliest {
                    cache.search_finish(at);
                    return Ok(mat);
                }
            } else if sid.is_dead() {
                cache.search_finish(at);
                return Ok(mat);
            } else if sid.is_quit() {
                cache.search_finish(at);
                return Err(MatchError::quit(input.haystack()[at], at));
            } else {
                debug_assert!(sid.is_unknown());
                unreachable!("sid being unknown is a bug");
            }
        }
        if at == input.start() {
            break;
        }
        at -= 1;
    }
    cache.search_finish(input.start());
    eoi_rev(dfa, cache, input, &mut sid, &mut mat)?;
    Ok(mat)
}

#[inline(never)]
pub(crate) fn find_overlapping_fwd(
    dfa: &DFA,
    cache: &mut Cache,
    input: &Input<'_>,
    state: &mut OverlappingState,
) -> Result<(), MatchError> {
    state.mat = None;
    if input.is_done() {
        return Ok(());
    }
    let pre = if input.get_anchored().is_anchored() {
        None
    } else {
        dfa.get_config().get_prefilter()
    };
    if pre.is_some() {
        find_overlapping_fwd_imp(dfa, cache, input, pre, state)
    } else {
        find_overlapping_fwd_imp(dfa, cache, input, None, state)
    }
}

#[cfg_attr(feature = "perf-inline", inline(always))]
fn find_overlapping_fwd_imp(
    dfa: &DFA,
    cache: &mut Cache,
    input: &Input<'_>,
    pre: Option<&'_ Prefilter>,
    state: &mut OverlappingState,
) -> Result<(), MatchError> {
    // See 'prefilter_restart' docs for explanation.
    let universal_start = dfa.get_nfa().look_set_prefix_any().is_empty();
    let mut sid = match state.id {
        None => {
            state.at = input.start();
            init_fwd(dfa, cache, input)?
        }
        Some(sid) => {
            if let Some(match_index) = state.next_match_index {
                let match_len = dfa.match_len(cache, sid);
                if match_index < match_len {
                    state.next_match_index = Some(match_index + 1);
                    let pattern = dfa.match_pattern(cache, sid, match_index);
                    state.mat = Some(HalfMatch::new(pattern, state.at));
                    return Ok(());
                }
            }
            // Once we've reported all matches at a given position, we need to
            // advance the search to the next position.
            state.at += 1;
            if state.at > input.end() {
                return Ok(());
            }
            sid
        }
    };

    // NOTE: We don't optimize the crap out of this routine primarily because
    // it seems like most overlapping searches will have higher match counts,
    // and thus, throughput is perhaps not as important. But if you have a use
    // case for something faster, feel free to file an issue.
    cache.search_start(state.at);
    while state.at < input.end() {
        sid = dfa
            .next_state(cache, sid, input.haystack()[state.at])
            .map_err(|_| gave_up(state.at))?;
        if sid.is_tagged() {
            state.id = Some(sid);
            if sid.is_start() {
                if let Some(ref pre) = pre {
                    let span = Span::from(state.at..input.end());
                    match pre.find(input.haystack(), span) {
                        None => return Ok(()),
                        Some(ref span) => {
                            if span.start > state.at {
                                state.at = span.start;
                                if !universal_start {
                                    sid = prefilter_restart(
                                        dfa, cache, &input, state.at,
                                    )?;
                                }
                                continue;
                            }
                        }
                    }
                }
            } else if sid.is_match() {
                state.next_match_index = Some(1);
                let pattern = dfa.match_pattern(cache, sid, 0);
                state.mat = Some(HalfMatch::new(pattern, state.at));
                cache.search_finish(state.at);
                return Ok(());
            } else if sid.is_dead() {
                cache.search_finish(state.at);
                return Ok(());
            } else if sid.is_quit() {
                cache.search_finish(state.at);
                return Err(MatchError::quit(
                    input.haystack()[state.at],
                    state.at,
                ));
            } else {
                debug_assert!(sid.is_unknown());
                unreachable!("sid being unknown is a bug");
            }
        }
        state.at += 1;
        cache.search_update(state.at);
    }

    let result = eoi_fwd(dfa, cache, input, &mut sid, &mut state.mat);
    state.id = Some(sid);
    if state.mat.is_some() {
        // '1' is always correct here since if we get to this point, this
        // always corresponds to the first (index '0') match discovered at
        // this position. So the next match to report at this position (if
        // it exists) is at index '1'.
        state.next_match_index = Some(1);
    }
    cache.search_finish(input.end());
    result
}

#[inline(never)]
pub(crate) fn find_overlapping_rev(
    dfa: &DFA,
    cache: &mut Cache,
    input: &Input<'_>,
    state: &mut OverlappingState,
) -> Result<(), MatchError> {
    state.mat = None;
    if input.is_done() {
        return Ok(());
    }
    let mut sid = match state.id {
        None => {
            let sid = init_rev(dfa, cache, input)?;
            state.id = Some(sid);
            if input.start() == input.end() {
                state.rev_eoi = true;
            } else {
                state.at = input.end() - 1;
            }
            sid
        }
        Some(sid) => {
            if let Some(match_index) = state.next_match_index {
                let match_len = dfa.match_len(cache, sid);
                if match_index < match_len {
                    state.next_match_index = Some(match_index + 1);
                    let pattern = dfa.match_pattern(cache, sid, match_index);
                    state.mat = Some(HalfMatch::new(pattern, state.at));
                    return Ok(());
                }
            }
            // Once we've reported all matches at a given position, we need
            // to advance the search to the next position. However, if we've
            // already followed the EOI transition, then we know we're done
            // with the search and there cannot be any more matches to report.
            if state.rev_eoi {
                return Ok(());
            } else if state.at == input.start() {
                // At this point, we should follow the EOI transition. This
                // will cause us the skip the main loop below and fall through
                // to the final 'eoi_rev' transition.
                state.rev_eoi = true;
            } else {
                // We haven't hit the end of the search yet, so move on.
                state.at -= 1;
            }
            sid
        }
    };
    cache.search_start(state.at);
    while !state.rev_eoi {
        sid = dfa
            .next_state(cache, sid, input.haystack()[state.at])
            .map_err(|_| gave_up(state.at))?;
        if sid.is_tagged() {
            state.id = Some(sid);
            if sid.is_start() {
                // do nothing
            } else if sid.is_match() {
                state.next_match_index = Some(1);
                let pattern = dfa.match_pattern(cache, sid, 0);
                state.mat = Some(HalfMatch::new(pattern, state.at + 1));
                cache.search_finish(state.at);
                return Ok(());
            } else if sid.is_dead() {
                cache.search_finish(state.at);
                return Ok(());
            } else if sid.is_quit() {
                cache.search_finish(state.at);
                return Err(MatchError::quit(
                    input.haystack()[state.at],
                    state.at,
                ));
            } else {
                debug_assert!(sid.is_unknown());
                unreachable!("sid being unknown is a bug");
            }
        }
        if state.at == input.start() {
            break;
        }
        state.at -= 1;
        cache.search_update(state.at);
    }

    let result = eoi_rev(dfa, cache, input, &mut sid, &mut state.mat);
    state.rev_eoi = true;
    state.id = Some(sid);
    if state.mat.is_some() {
        // '1' is always correct here since if we get to this point, this
        // always corresponds to the first (index '0') match discovered at
        // this position. So the next match to report at this position (if
        // it exists) is at index '1'.
        state.next_match_index = Some(1);
    }
    cache.search_finish(input.start());
    result
}

#[cfg_attr(feature = "perf-inline", inline(always))]
fn init_fwd(
    dfa: &DFA,
    cache: &mut Cache,
    input: &Input<'_>,
) -> Result<LazyStateID, MatchError> {
    let sid = dfa.start_state_forward(cache, input)?;
    // Start states can never be match states, since all matches are delayed
    // by 1 byte.
    debug_assert!(!sid.is_match());
    Ok(sid)
}

#[cfg_attr(feature = "perf-inline", inline(always))]
fn init_rev(
    dfa: &DFA,
    cache: &mut Cache,
    input: &Input<'_>,
) -> Result<LazyStateID, MatchError> {
    let sid = dfa.start_state_reverse(cache, input)?;
    // Start states can never be match states, since all matches are delayed
    // by 1 byte.
    debug_assert!(!sid.is_match());
    Ok(sid)
}

#[cfg_attr(feature = "perf-inline", inline(always))]
fn eoi_fwd(
    dfa: &DFA,
    cache: &mut Cache,
    input: &Input<'_>,
    sid: &mut LazyStateID,
    mat: &mut Option<HalfMatch>,
) -> Result<(), MatchError> {
    let sp = input.get_span();
    match input.haystack().get(sp.end) {
        Some(&b) => {
            *sid =
                dfa.next_state(cache, *sid, b).map_err(|_| gave_up(sp.end))?;
            if sid.is_match() {
                let pattern = dfa.match_pattern(cache, *sid, 0);
                *mat = Some(HalfMatch::new(pattern, sp.end));
            } else if sid.is_quit() {
                return Err(MatchError::quit(b, sp.end));
            }
        }
        None => {
            *sid = dfa
                .next_eoi_state(cache, *sid)
                .map_err(|_| gave_up(input.haystack().len()))?;
            if sid.is_match() {
                let pattern = dfa.match_pattern(cache, *sid, 0);
                *mat = Some(HalfMatch::new(pattern, input.haystack().len()));
            }
            // N.B. We don't have to check 'is_quit' here because the EOI
            // transition can never lead to a quit state.
            debug_assert!(!sid.is_quit());
        }
    }
    Ok(())
}

#[cfg_attr(feature = "perf-inline", inline(always))]
fn eoi_rev(
    dfa: &DFA,
    cache: &mut Cache,
    input: &Input<'_>,
    sid: &mut LazyStateID,
    mat: &mut Option<HalfMatch>,
) -> Result<(), MatchError> {
    let sp = input.get_span();
    if sp.start > 0 {
        let byte = input.haystack()[sp.start - 1];
        *sid = dfa
            .next_state(cache, *sid, byte)
            .map_err(|_| gave_up(sp.start))?;
        if sid.is_match() {
            let pattern = dfa.match_pattern(cache, *sid, 0);
            *mat = Some(HalfMatch::new(pattern, sp.start));
        } else if sid.is_quit() {
            return Err(MatchError::quit(byte, sp.start - 1));
        }
    } else {
        *sid =
            dfa.next_eoi_state(cache, *sid).map_err(|_| gave_up(sp.start))?;
        if sid.is_match() {
            let pattern = dfa.match_pattern(cache, *sid, 0);
            *mat = Some(HalfMatch::new(pattern, 0));
        }
        // N.B. We don't have to check 'is_quit' here because the EOI
        // transition can never lead to a quit state.
        debug_assert!(!sid.is_quit());
    }
    Ok(())
}

/// Re-compute the starting state that a DFA should be in after finding a
/// prefilter candidate match at the position `at`.
///
/// It is always correct to call this, but not always necessary. Namely,
/// whenever the DFA has a universal start state, the DFA can remain in the
/// start state that it was in when it ran the prefilter. Why? Because in that
/// case, there is only one start state.
///
/// When does a DFA have a universal start state? In precisely cases where
/// it has no look-around assertions in its prefix. So for example, `\bfoo`
/// does not have a universal start state because the start state depends on
/// whether the byte immediately before the start position is a word byte or
/// not. However, `foo\b` does have a universal start state because the word
/// boundary does not appear in the pattern's prefix.
///
/// So... most cases don't need this, but when a pattern doesn't have a
/// universal start state, then after a prefilter candidate has been found, the
/// current state *must* be re-litigated as if computing the start state at the
/// beginning of the search because it might change. That is, not all start
/// states are created equal.
///
/// Why avoid it? Because while it's not super expensive, it isn't a trivial
/// operation to compute the start state. It is much better to avoid it and
/// just state in the current state if you know it to be correct.
#[cfg_attr(feature = "perf-inline", inline(always))]
fn prefilter_restart(
    dfa: &DFA,
    cache: &mut Cache,
    input: &Input<'_>,
    at: usize,
) -> Result<LazyStateID, MatchError> {
    let mut input = input.clone();
    input.set_start(at);
    init_fwd(dfa, cache, &input)
}

/// A convenience routine for constructing a "gave up" match error.
#[cfg_attr(feature = "perf-inline", inline(always))]
fn gave_up(offset: usize) -> MatchError {
    MatchError::gave_up(offset)
}