1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802
use crate::{
hybrid::{
dfa::{Cache, OverlappingState, DFA},
id::LazyStateID,
},
util::{
prefilter::Prefilter,
search::{HalfMatch, Input, MatchError, Span},
},
};
#[inline(never)]
pub(crate) fn find_fwd(
dfa: &DFA,
cache: &mut Cache,
input: &Input<'_>,
) -> Result<Option<HalfMatch>, MatchError> {
if input.is_done() {
return Ok(None);
}
let pre = if input.get_anchored().is_anchored() {
None
} else {
dfa.get_config().get_prefilter()
};
// So what we do here is specialize four different versions of 'find_fwd':
// one for each of the combinations for 'has prefilter' and 'is earliest
// search'. The reason for doing this is that both of these things require
// branches and special handling in some code that can be very hot,
// and shaving off as much as we can when we don't need it tends to be
// beneficial in ad hoc benchmarks. To see these differences, you often
// need a query with a high match count. In other words, specializing these
// four routines *tends* to help latency more than throughput.
if pre.is_some() {
if input.get_earliest() {
find_fwd_imp(dfa, cache, input, pre, true)
} else {
find_fwd_imp(dfa, cache, input, pre, false)
}
} else {
if input.get_earliest() {
find_fwd_imp(dfa, cache, input, None, true)
} else {
find_fwd_imp(dfa, cache, input, None, false)
}
}
}
#[cfg_attr(feature = "perf-inline", inline(always))]
fn find_fwd_imp(
dfa: &DFA,
cache: &mut Cache,
input: &Input<'_>,
pre: Option<&'_ Prefilter>,
earliest: bool,
) -> Result<Option<HalfMatch>, MatchError> {
// See 'prefilter_restart' docs for explanation.
let universal_start = dfa.get_nfa().look_set_prefix_any().is_empty();
let mut mat = None;
let mut sid = init_fwd(dfa, cache, input)?;
let mut at = input.start();
// This could just be a closure, but then I think it would be unsound
// because it would need to be safe to invoke. This way, the lack of safety
// is clearer in the code below.
macro_rules! next_unchecked {
($sid:expr, $at:expr) => {{
let byte = *input.haystack().get_unchecked($at);
dfa.next_state_untagged_unchecked(cache, $sid, byte)
}};
}
if let Some(ref pre) = pre {
let span = Span::from(at..input.end());
match pre.find(input.haystack(), span) {
None => return Ok(mat),
Some(ref span) => {
at = span.start;
if !universal_start {
sid = prefilter_restart(dfa, cache, &input, at)?;
}
}
}
}
cache.search_start(at);
while at < input.end() {
if sid.is_tagged() {
cache.search_update(at);
sid = dfa
.next_state(cache, sid, input.haystack()[at])
.map_err(|_| gave_up(at))?;
} else {
// SAFETY: There are two safety invariants we need to uphold
// here in the loops below: that 'sid' and 'prev_sid' are valid
// state IDs for this DFA, and that 'at' is a valid index into
// 'haystack'. For the former, we rely on the invariant that
// next_state* and start_state_forward always returns a valid state
// ID (given a valid state ID in the former case), and that we are
// only at this place in the code if 'sid' is untagged. Moreover,
// every call to next_state_untagged_unchecked below is guarded by
// a check that sid is untagged. For the latter safety invariant,
// we always guard unchecked access with a check that 'at' is less
// than 'end', where 'end <= haystack.len()'. In the unrolled loop
// below, we ensure that 'at' is always in bounds.
//
// PERF: For justification of omitting bounds checks, it gives us a
// ~10% bump in search time. This was used for a benchmark:
//
// regex-cli find hybrid dfa @bigfile '(?m)^.+$' -UBb
//
// PERF: For justification for the loop unrolling, we use a few
// different tests:
//
// regex-cli find hybrid dfa @$bigfile '\w{50}' -UBb
// regex-cli find hybrid dfa @$bigfile '(?m)^.+$' -UBb
// regex-cli find hybrid dfa @$bigfile 'ZQZQZQZQ' -UBb
//
// And there are three different configurations:
//
// nounroll: this entire 'else' block vanishes and we just
// always use 'dfa.next_state(..)'.
// unroll1: just the outer loop below
// unroll2: just the inner loop below
// unroll3: both the outer and inner loops below
//
// This results in a matrix of timings for each of the above
// regexes with each of the above unrolling configurations:
//
// '\w{50}' '(?m)^.+$' 'ZQZQZQZQ'
// nounroll 1.51s 2.34s 1.51s
// unroll1 1.53s 2.32s 1.56s
// unroll2 2.22s 1.50s 0.61s
// unroll3 1.67s 1.45s 0.61s
//
// Ideally we'd be able to find a configuration that yields the
// best time for all regexes, but alas we settle for unroll3 that
// gives us *almost* the best for '\w{50}' and the best for the
// other two regexes.
//
// So what exactly is going on here? The first unrolling (grouping
// together runs of untagged transitions) specifically targets
// our choice of representation. The second unrolling (grouping
// together runs of self-transitions) specifically targets a common
// DFA topology. Let's dig in a little bit by looking at our
// regexes:
//
// '\w{50}': This regex spends a lot of time outside of the DFA's
// start state matching some part of the '\w' repetition. This
// means that it's a bit of a worst case for loop unrolling that
// targets self-transitions since the self-transitions in '\w{50}'
// are not particularly active for this haystack. However, the
// first unrolling (grouping together untagged transitions)
// does apply quite well here since very few transitions hit
// match/dead/quit/unknown states. It is however worth mentioning
// that if start states are configured to be tagged (which you
// typically want to do if you have a prefilter), then this regex
// actually slows way down because it is constantly ping-ponging
// out of the unrolled loop and into the handling of a tagged start
// state below. But when start states aren't tagged, the unrolled
// loop stays hot. (This is why it's imperative that start state
// tagging be disabled when there isn't a prefilter!)
//
// '(?m)^.+$': There are two important aspects of this regex: 1)
// on this haystack, its match count is very high, much higher
// than the other two regex and 2) it spends the vast majority
// of its time matching '.+'. Since Unicode mode is disabled,
// this corresponds to repeatedly following self transitions for
// the vast majority of the input. This does benefit from the
// untagged unrolling since most of the transitions will be to
// untagged states, but the untagged unrolling does more work than
// what is actually required. Namely, it has to keep track of the
// previous and next state IDs, which I guess requires a bit more
// shuffling. This is supported by the fact that nounroll+unroll1
// are both slower than unroll2+unroll3, where the latter has a
// loop unrolling that specifically targets self-transitions.
//
// 'ZQZQZQZQ': This one is very similar to '(?m)^.+$' because it
// spends the vast majority of its time in self-transitions for
// the (implicit) unanchored prefix. The main difference with
// '(?m)^.+$' is that it has a much lower match count. So there
// isn't much time spent in the overhead of reporting matches. This
// is the primary explainer in the perf difference here. We include
// this regex and the former to make sure we have comparison points
// with high and low match counts.
//
// NOTE: I used 'OpenSubtitles2018.raw.sample.en' for 'bigfile'.
//
// NOTE: In a follow-up, it turns out that the "inner" loop
// mentioned above was a pretty big pessimization in some other
// cases. Namely, it resulted in too much ping-ponging into and out
// of the loop, which resulted in nearly ~2x regressions in search
// time when compared to the originally lazy DFA in the regex crate.
// So I've removed the second loop unrolling that targets the
// self-transition case.
let mut prev_sid = sid;
while at < input.end() {
prev_sid = unsafe { next_unchecked!(sid, at) };
if prev_sid.is_tagged() || at + 3 >= input.end() {
core::mem::swap(&mut prev_sid, &mut sid);
break;
}
at += 1;
sid = unsafe { next_unchecked!(prev_sid, at) };
if sid.is_tagged() {
break;
}
at += 1;
prev_sid = unsafe { next_unchecked!(sid, at) };
if prev_sid.is_tagged() {
core::mem::swap(&mut prev_sid, &mut sid);
break;
}
at += 1;
sid = unsafe { next_unchecked!(prev_sid, at) };
if sid.is_tagged() {
break;
}
at += 1;
}
// If we quit out of the code above with an unknown state ID at
// any point, then we need to re-compute that transition using
// 'next_state', which will do NFA powerset construction for us.
if sid.is_unknown() {
cache.search_update(at);
sid = dfa
.next_state(cache, prev_sid, input.haystack()[at])
.map_err(|_| gave_up(at))?;
}
}
if sid.is_tagged() {
if sid.is_start() {
if let Some(ref pre) = pre {
let span = Span::from(at..input.end());
match pre.find(input.haystack(), span) {
None => {
cache.search_finish(span.end);
return Ok(mat);
}
Some(ref span) => {
// We want to skip any update to 'at' below
// at the end of this iteration and just
// jump immediately back to the next state
// transition at the leading position of the
// candidate match.
//
// ... but only if we actually made progress
// with our prefilter, otherwise if the start
// state has a self-loop, we can get stuck.
if span.start > at {
at = span.start;
if !universal_start {
sid = prefilter_restart(
dfa, cache, &input, at,
)?;
}
continue;
}
}
}
}
} else if sid.is_match() {
let pattern = dfa.match_pattern(cache, sid, 0);
// Since slice ranges are inclusive at the beginning and
// exclusive at the end, and since forward searches report
// the end, we can return 'at' as-is. This only works because
// matches are delayed by 1 byte. So by the time we observe a
// match, 'at' has already been set to 1 byte past the actual
// match location, which is precisely the exclusive ending
// bound of the match.
mat = Some(HalfMatch::new(pattern, at));
if earliest {
cache.search_finish(at);
return Ok(mat);
}
} else if sid.is_dead() {
cache.search_finish(at);
return Ok(mat);
} else if sid.is_quit() {
cache.search_finish(at);
return Err(MatchError::quit(input.haystack()[at], at));
} else {
debug_assert!(sid.is_unknown());
unreachable!("sid being unknown is a bug");
}
}
at += 1;
}
eoi_fwd(dfa, cache, input, &mut sid, &mut mat)?;
cache.search_finish(input.end());
Ok(mat)
}
#[inline(never)]
pub(crate) fn find_rev(
dfa: &DFA,
cache: &mut Cache,
input: &Input<'_>,
) -> Result<Option<HalfMatch>, MatchError> {
if input.is_done() {
return Ok(None);
}
if input.get_earliest() {
find_rev_imp(dfa, cache, input, true)
} else {
find_rev_imp(dfa, cache, input, false)
}
}
#[cfg_attr(feature = "perf-inline", inline(always))]
fn find_rev_imp(
dfa: &DFA,
cache: &mut Cache,
input: &Input<'_>,
earliest: bool,
) -> Result<Option<HalfMatch>, MatchError> {
let mut mat = None;
let mut sid = init_rev(dfa, cache, input)?;
// In reverse search, the loop below can't handle the case of searching an
// empty slice. Ideally we could write something congruent to the forward
// search, i.e., 'while at >= start', but 'start' might be 0. Since we use
// an unsigned offset, 'at >= 0' is trivially always true. We could avoid
// this extra case handling by using a signed offset, but Rust makes it
// annoying to do. So... We just handle the empty case separately.
if input.start() == input.end() {
eoi_rev(dfa, cache, input, &mut sid, &mut mat)?;
return Ok(mat);
}
let mut at = input.end() - 1;
macro_rules! next_unchecked {
($sid:expr, $at:expr) => {{
let byte = *input.haystack().get_unchecked($at);
dfa.next_state_untagged_unchecked(cache, $sid, byte)
}};
}
cache.search_start(at);
loop {
if sid.is_tagged() {
cache.search_update(at);
sid = dfa
.next_state(cache, sid, input.haystack()[at])
.map_err(|_| gave_up(at))?;
} else {
// SAFETY: See comments in 'find_fwd' for a safety argument.
//
// PERF: The comments in 'find_fwd' also provide a justification
// from a performance perspective as to 1) why we elide bounds
// checks and 2) why we do a specialized version of unrolling
// below. The reverse search does have a slightly different
// consideration in that most reverse searches tend to be
// anchored and on shorter haystacks. However, this still makes a
// difference. Take this command for example:
//
// regex-cli find hybrid regex @$bigfile '(?m)^.+$' -UBb
//
// (Notice that we use 'find hybrid regex', not 'find hybrid dfa'
// like in the justification for the forward direction. The 'regex'
// sub-command will find start-of-match and thus run the reverse
// direction.)
//
// Without unrolling below, the above command takes around 3.76s.
// But with the unrolling below, we get down to 2.55s. If we keep
// the unrolling but add in bounds checks, then we get 2.86s.
//
// NOTE: I used 'OpenSubtitles2018.raw.sample.en' for 'bigfile'.
let mut prev_sid = sid;
while at >= input.start() {
prev_sid = unsafe { next_unchecked!(sid, at) };
if prev_sid.is_tagged()
|| at <= input.start().saturating_add(3)
{
core::mem::swap(&mut prev_sid, &mut sid);
break;
}
at -= 1;
sid = unsafe { next_unchecked!(prev_sid, at) };
if sid.is_tagged() {
break;
}
at -= 1;
prev_sid = unsafe { next_unchecked!(sid, at) };
if prev_sid.is_tagged() {
core::mem::swap(&mut prev_sid, &mut sid);
break;
}
at -= 1;
sid = unsafe { next_unchecked!(prev_sid, at) };
if sid.is_tagged() {
break;
}
at -= 1;
}
// If we quit out of the code above with an unknown state ID at
// any point, then we need to re-compute that transition using
// 'next_state', which will do NFA powerset construction for us.
if sid.is_unknown() {
cache.search_update(at);
sid = dfa
.next_state(cache, prev_sid, input.haystack()[at])
.map_err(|_| gave_up(at))?;
}
}
if sid.is_tagged() {
if sid.is_start() {
// do nothing
} else if sid.is_match() {
let pattern = dfa.match_pattern(cache, sid, 0);
// Since reverse searches report the beginning of a match
// and the beginning is inclusive (not exclusive like the
// end of a match), we add 1 to make it inclusive.
mat = Some(HalfMatch::new(pattern, at + 1));
if earliest {
cache.search_finish(at);
return Ok(mat);
}
} else if sid.is_dead() {
cache.search_finish(at);
return Ok(mat);
} else if sid.is_quit() {
cache.search_finish(at);
return Err(MatchError::quit(input.haystack()[at], at));
} else {
debug_assert!(sid.is_unknown());
unreachable!("sid being unknown is a bug");
}
}
if at == input.start() {
break;
}
at -= 1;
}
cache.search_finish(input.start());
eoi_rev(dfa, cache, input, &mut sid, &mut mat)?;
Ok(mat)
}
#[inline(never)]
pub(crate) fn find_overlapping_fwd(
dfa: &DFA,
cache: &mut Cache,
input: &Input<'_>,
state: &mut OverlappingState,
) -> Result<(), MatchError> {
state.mat = None;
if input.is_done() {
return Ok(());
}
let pre = if input.get_anchored().is_anchored() {
None
} else {
dfa.get_config().get_prefilter()
};
if pre.is_some() {
find_overlapping_fwd_imp(dfa, cache, input, pre, state)
} else {
find_overlapping_fwd_imp(dfa, cache, input, None, state)
}
}
#[cfg_attr(feature = "perf-inline", inline(always))]
fn find_overlapping_fwd_imp(
dfa: &DFA,
cache: &mut Cache,
input: &Input<'_>,
pre: Option<&'_ Prefilter>,
state: &mut OverlappingState,
) -> Result<(), MatchError> {
// See 'prefilter_restart' docs for explanation.
let universal_start = dfa.get_nfa().look_set_prefix_any().is_empty();
let mut sid = match state.id {
None => {
state.at = input.start();
init_fwd(dfa, cache, input)?
}
Some(sid) => {
if let Some(match_index) = state.next_match_index {
let match_len = dfa.match_len(cache, sid);
if match_index < match_len {
state.next_match_index = Some(match_index + 1);
let pattern = dfa.match_pattern(cache, sid, match_index);
state.mat = Some(HalfMatch::new(pattern, state.at));
return Ok(());
}
}
// Once we've reported all matches at a given position, we need to
// advance the search to the next position.
state.at += 1;
if state.at > input.end() {
return Ok(());
}
sid
}
};
// NOTE: We don't optimize the crap out of this routine primarily because
// it seems like most overlapping searches will have higher match counts,
// and thus, throughput is perhaps not as important. But if you have a use
// case for something faster, feel free to file an issue.
cache.search_start(state.at);
while state.at < input.end() {
sid = dfa
.next_state(cache, sid, input.haystack()[state.at])
.map_err(|_| gave_up(state.at))?;
if sid.is_tagged() {
state.id = Some(sid);
if sid.is_start() {
if let Some(ref pre) = pre {
let span = Span::from(state.at..input.end());
match pre.find(input.haystack(), span) {
None => return Ok(()),
Some(ref span) => {
if span.start > state.at {
state.at = span.start;
if !universal_start {
sid = prefilter_restart(
dfa, cache, &input, state.at,
)?;
}
continue;
}
}
}
}
} else if sid.is_match() {
state.next_match_index = Some(1);
let pattern = dfa.match_pattern(cache, sid, 0);
state.mat = Some(HalfMatch::new(pattern, state.at));
cache.search_finish(state.at);
return Ok(());
} else if sid.is_dead() {
cache.search_finish(state.at);
return Ok(());
} else if sid.is_quit() {
cache.search_finish(state.at);
return Err(MatchError::quit(
input.haystack()[state.at],
state.at,
));
} else {
debug_assert!(sid.is_unknown());
unreachable!("sid being unknown is a bug");
}
}
state.at += 1;
cache.search_update(state.at);
}
let result = eoi_fwd(dfa, cache, input, &mut sid, &mut state.mat);
state.id = Some(sid);
if state.mat.is_some() {
// '1' is always correct here since if we get to this point, this
// always corresponds to the first (index '0') match discovered at
// this position. So the next match to report at this position (if
// it exists) is at index '1'.
state.next_match_index = Some(1);
}
cache.search_finish(input.end());
result
}
#[inline(never)]
pub(crate) fn find_overlapping_rev(
dfa: &DFA,
cache: &mut Cache,
input: &Input<'_>,
state: &mut OverlappingState,
) -> Result<(), MatchError> {
state.mat = None;
if input.is_done() {
return Ok(());
}
let mut sid = match state.id {
None => {
let sid = init_rev(dfa, cache, input)?;
state.id = Some(sid);
if input.start() == input.end() {
state.rev_eoi = true;
} else {
state.at = input.end() - 1;
}
sid
}
Some(sid) => {
if let Some(match_index) = state.next_match_index {
let match_len = dfa.match_len(cache, sid);
if match_index < match_len {
state.next_match_index = Some(match_index + 1);
let pattern = dfa.match_pattern(cache, sid, match_index);
state.mat = Some(HalfMatch::new(pattern, state.at));
return Ok(());
}
}
// Once we've reported all matches at a given position, we need
// to advance the search to the next position. However, if we've
// already followed the EOI transition, then we know we're done
// with the search and there cannot be any more matches to report.
if state.rev_eoi {
return Ok(());
} else if state.at == input.start() {
// At this point, we should follow the EOI transition. This
// will cause us the skip the main loop below and fall through
// to the final 'eoi_rev' transition.
state.rev_eoi = true;
} else {
// We haven't hit the end of the search yet, so move on.
state.at -= 1;
}
sid
}
};
cache.search_start(state.at);
while !state.rev_eoi {
sid = dfa
.next_state(cache, sid, input.haystack()[state.at])
.map_err(|_| gave_up(state.at))?;
if sid.is_tagged() {
state.id = Some(sid);
if sid.is_start() {
// do nothing
} else if sid.is_match() {
state.next_match_index = Some(1);
let pattern = dfa.match_pattern(cache, sid, 0);
state.mat = Some(HalfMatch::new(pattern, state.at + 1));
cache.search_finish(state.at);
return Ok(());
} else if sid.is_dead() {
cache.search_finish(state.at);
return Ok(());
} else if sid.is_quit() {
cache.search_finish(state.at);
return Err(MatchError::quit(
input.haystack()[state.at],
state.at,
));
} else {
debug_assert!(sid.is_unknown());
unreachable!("sid being unknown is a bug");
}
}
if state.at == input.start() {
break;
}
state.at -= 1;
cache.search_update(state.at);
}
let result = eoi_rev(dfa, cache, input, &mut sid, &mut state.mat);
state.rev_eoi = true;
state.id = Some(sid);
if state.mat.is_some() {
// '1' is always correct here since if we get to this point, this
// always corresponds to the first (index '0') match discovered at
// this position. So the next match to report at this position (if
// it exists) is at index '1'.
state.next_match_index = Some(1);
}
cache.search_finish(input.start());
result
}
#[cfg_attr(feature = "perf-inline", inline(always))]
fn init_fwd(
dfa: &DFA,
cache: &mut Cache,
input: &Input<'_>,
) -> Result<LazyStateID, MatchError> {
let sid = dfa.start_state_forward(cache, input)?;
// Start states can never be match states, since all matches are delayed
// by 1 byte.
debug_assert!(!sid.is_match());
Ok(sid)
}
#[cfg_attr(feature = "perf-inline", inline(always))]
fn init_rev(
dfa: &DFA,
cache: &mut Cache,
input: &Input<'_>,
) -> Result<LazyStateID, MatchError> {
let sid = dfa.start_state_reverse(cache, input)?;
// Start states can never be match states, since all matches are delayed
// by 1 byte.
debug_assert!(!sid.is_match());
Ok(sid)
}
#[cfg_attr(feature = "perf-inline", inline(always))]
fn eoi_fwd(
dfa: &DFA,
cache: &mut Cache,
input: &Input<'_>,
sid: &mut LazyStateID,
mat: &mut Option<HalfMatch>,
) -> Result<(), MatchError> {
let sp = input.get_span();
match input.haystack().get(sp.end) {
Some(&b) => {
*sid =
dfa.next_state(cache, *sid, b).map_err(|_| gave_up(sp.end))?;
if sid.is_match() {
let pattern = dfa.match_pattern(cache, *sid, 0);
*mat = Some(HalfMatch::new(pattern, sp.end));
} else if sid.is_quit() {
return Err(MatchError::quit(b, sp.end));
}
}
None => {
*sid = dfa
.next_eoi_state(cache, *sid)
.map_err(|_| gave_up(input.haystack().len()))?;
if sid.is_match() {
let pattern = dfa.match_pattern(cache, *sid, 0);
*mat = Some(HalfMatch::new(pattern, input.haystack().len()));
}
// N.B. We don't have to check 'is_quit' here because the EOI
// transition can never lead to a quit state.
debug_assert!(!sid.is_quit());
}
}
Ok(())
}
#[cfg_attr(feature = "perf-inline", inline(always))]
fn eoi_rev(
dfa: &DFA,
cache: &mut Cache,
input: &Input<'_>,
sid: &mut LazyStateID,
mat: &mut Option<HalfMatch>,
) -> Result<(), MatchError> {
let sp = input.get_span();
if sp.start > 0 {
let byte = input.haystack()[sp.start - 1];
*sid = dfa
.next_state(cache, *sid, byte)
.map_err(|_| gave_up(sp.start))?;
if sid.is_match() {
let pattern = dfa.match_pattern(cache, *sid, 0);
*mat = Some(HalfMatch::new(pattern, sp.start));
} else if sid.is_quit() {
return Err(MatchError::quit(byte, sp.start - 1));
}
} else {
*sid =
dfa.next_eoi_state(cache, *sid).map_err(|_| gave_up(sp.start))?;
if sid.is_match() {
let pattern = dfa.match_pattern(cache, *sid, 0);
*mat = Some(HalfMatch::new(pattern, 0));
}
// N.B. We don't have to check 'is_quit' here because the EOI
// transition can never lead to a quit state.
debug_assert!(!sid.is_quit());
}
Ok(())
}
/// Re-compute the starting state that a DFA should be in after finding a
/// prefilter candidate match at the position `at`.
///
/// It is always correct to call this, but not always necessary. Namely,
/// whenever the DFA has a universal start state, the DFA can remain in the
/// start state that it was in when it ran the prefilter. Why? Because in that
/// case, there is only one start state.
///
/// When does a DFA have a universal start state? In precisely cases where
/// it has no look-around assertions in its prefix. So for example, `\bfoo`
/// does not have a universal start state because the start state depends on
/// whether the byte immediately before the start position is a word byte or
/// not. However, `foo\b` does have a universal start state because the word
/// boundary does not appear in the pattern's prefix.
///
/// So... most cases don't need this, but when a pattern doesn't have a
/// universal start state, then after a prefilter candidate has been found, the
/// current state *must* be re-litigated as if computing the start state at the
/// beginning of the search because it might change. That is, not all start
/// states are created equal.
///
/// Why avoid it? Because while it's not super expensive, it isn't a trivial
/// operation to compute the start state. It is much better to avoid it and
/// just state in the current state if you know it to be correct.
#[cfg_attr(feature = "perf-inline", inline(always))]
fn prefilter_restart(
dfa: &DFA,
cache: &mut Cache,
input: &Input<'_>,
at: usize,
) -> Result<LazyStateID, MatchError> {
let mut input = input.clone();
input.set_start(at);
init_fwd(dfa, cache, &input)
}
/// A convenience routine for constructing a "gave up" match error.
#[cfg_attr(feature = "perf-inline", inline(always))]
fn gave_up(offset: usize) -> MatchError {
MatchError::gave_up(offset)
}