1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367
/*!
An NFA backed Pike VM for executing regex searches with capturing groups.
This module provides a [`PikeVM`] that works by simulating an NFA and
resolving all spans of capturing groups that participate in a match.
*/
#[cfg(feature = "internal-instrument-pikevm")]
use core::cell::RefCell;
use alloc::{vec, vec::Vec};
use crate::{
nfa::thompson::{self, BuildError, State, NFA},
util::{
captures::Captures,
empty, iter,
prefilter::Prefilter,
primitives::{NonMaxUsize, PatternID, SmallIndex, StateID},
search::{Anchored, Input, Match, MatchKind, PatternSet, Span},
sparse_set::SparseSet,
},
};
/// A simple macro for conditionally executing instrumentation logic when
/// the 'trace' log level is enabled. This is a compile-time no-op when the
/// 'internal-instrument-pikevm' feature isn't enabled. The intent here is that
/// this makes it easier to avoid doing extra work when instrumentation isn't
/// enabled.
///
/// This macro accepts a closure of type `|&mut Counters|`. The closure can
/// then increment counters (or whatever) in accordance with what one wants
/// to track.
macro_rules! instrument {
($fun:expr) => {
#[cfg(feature = "internal-instrument-pikevm")]
{
let fun: &mut dyn FnMut(&mut Counters) = &mut $fun;
COUNTERS.with(|c: &RefCell<Counters>| fun(&mut *c.borrow_mut()));
}
};
}
#[cfg(feature = "internal-instrument-pikevm")]
std::thread_local! {
/// Effectively global state used to keep track of instrumentation
/// counters. The "proper" way to do this is to thread it through the
/// PikeVM, but it makes the code quite icky. Since this is just a
/// debugging feature, we're content to relegate it to thread local
/// state. When instrumentation is enabled, the counters are reset at the
/// beginning of every search and printed (with the 'trace' log level) at
/// the end of every search.
static COUNTERS: RefCell<Counters> = RefCell::new(Counters::empty());
}
/// The configuration used for building a [`PikeVM`].
///
/// A PikeVM configuration is a simple data object that is typically used with
/// [`Builder::configure`]. It can be cheaply cloned.
///
/// A default configuration can be created either with `Config::new`, or
/// perhaps more conveniently, with [`PikeVM::config`].
#[derive(Clone, Debug, Default)]
pub struct Config {
match_kind: Option<MatchKind>,
pre: Option<Option<Prefilter>>,
}
impl Config {
/// Return a new default PikeVM configuration.
pub fn new() -> Config {
Config::default()
}
/// Set the desired match semantics.
///
/// The default is [`MatchKind::LeftmostFirst`], which corresponds to the
/// match semantics of Perl-like regex engines. That is, when multiple
/// patterns would match at the same leftmost position, the pattern that
/// appears first in the concrete syntax is chosen.
///
/// Currently, the only other kind of match semantics supported is
/// [`MatchKind::All`]. This corresponds to "classical DFA" construction
/// where all possible matches are visited in the NFA by the `PikeVM`.
///
/// Typically, `All` is used when one wants to execute an overlapping
/// search and `LeftmostFirst` otherwise. In particular, it rarely makes
/// sense to use `All` with the various "leftmost" find routines, since the
/// leftmost routines depend on the `LeftmostFirst` automata construction
/// strategy. Specifically, `LeftmostFirst` results in the `PikeVM`
/// simulating dead states as a way to terminate the search and report a
/// match. `LeftmostFirst` also supports non-greedy matches using this
/// strategy where as `All` does not.
pub fn match_kind(mut self, kind: MatchKind) -> Config {
self.match_kind = Some(kind);
self
}
/// Set a prefilter to be used whenever a start state is entered.
///
/// A [`Prefilter`] in this context is meant to accelerate searches by
/// looking for literal prefixes that every match for the corresponding
/// pattern (or patterns) must start with. Once a prefilter produces a
/// match, the underlying search routine continues on to try and confirm
/// the match.
///
/// Be warned that setting a prefilter does not guarantee that the search
/// will be faster. While it's usually a good bet, if the prefilter
/// produces a lot of false positive candidates (i.e., positions matched
/// by the prefilter but not by the regex), then the overall result can
/// be slower than if you had just executed the regex engine without any
/// prefilters.
///
/// By default no prefilter is set.
///
/// # Example
///
/// ```
/// use regex_automata::{
/// nfa::thompson::pikevm::PikeVM,
/// util::prefilter::Prefilter,
/// Input, Match, MatchKind,
/// };
///
/// let pre = Prefilter::new(MatchKind::LeftmostFirst, &["foo", "bar"]);
/// let re = PikeVM::builder()
/// .configure(PikeVM::config().prefilter(pre))
/// .build(r"(foo|bar)[a-z]+")?;
/// let mut cache = re.create_cache();
/// let input = Input::new("foo1 barfox bar");
/// assert_eq!(Some(Match::must(0, 5..11)), re.find(&mut cache, input));
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// Be warned though that an incorrect prefilter can lead to incorrect
/// results!
///
/// ```
/// use regex_automata::{
/// nfa::thompson::pikevm::PikeVM,
/// util::prefilter::Prefilter,
/// Input, HalfMatch, MatchKind,
/// };
///
/// let pre = Prefilter::new(MatchKind::LeftmostFirst, &["foo", "car"]);
/// let re = PikeVM::builder()
/// .configure(PikeVM::config().prefilter(pre))
/// .build(r"(foo|bar)[a-z]+")?;
/// let mut cache = re.create_cache();
/// let input = Input::new("foo1 barfox bar");
/// // No match reported even though there clearly is one!
/// assert_eq!(None, re.find(&mut cache, input));
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
pub fn prefilter(mut self, pre: Option<Prefilter>) -> Config {
self.pre = Some(pre);
self
}
/// Returns the match semantics set in this configuration.
pub fn get_match_kind(&self) -> MatchKind {
self.match_kind.unwrap_or(MatchKind::LeftmostFirst)
}
/// Returns the prefilter set in this configuration, if one at all.
pub fn get_prefilter(&self) -> Option<&Prefilter> {
self.pre.as_ref().unwrap_or(&None).as_ref()
}
/// Overwrite the default configuration such that the options in `o` are
/// always used. If an option in `o` is not set, then the corresponding
/// option in `self` is used. If it's not set in `self` either, then it
/// remains not set.
pub(crate) fn overwrite(&self, o: Config) -> Config {
Config {
match_kind: o.match_kind.or(self.match_kind),
pre: o.pre.or_else(|| self.pre.clone()),
}
}
}
/// A builder for a `PikeVM`.
///
/// This builder permits configuring options for the syntax of a pattern,
/// the NFA construction and the `PikeVM` construction. This builder is
/// different from a general purpose regex builder in that it permits fine
/// grain configuration of the construction process. The trade off for this is
/// complexity, and the possibility of setting a configuration that might not
/// make sense. For example, there are two different UTF-8 modes:
///
/// * [`util::syntax::Config::utf8`](crate::util::syntax::Config::utf8)
/// controls whether the pattern itself can contain sub-expressions that match
/// invalid UTF-8.
/// * [`thompson::Config::utf8`] controls whether empty matches that split a
/// Unicode codepoint are reported or not.
///
/// Generally speaking, callers will want to either enable all of these or
/// disable all of these.
///
/// # Example
///
/// This example shows how to disable UTF-8 mode in the syntax and the regex
/// itself. This is generally what you want for matching on arbitrary bytes.
///
/// ```
/// use regex_automata::{
/// nfa::thompson::{self, pikevm::PikeVM},
/// util::syntax,
/// Match,
/// };
///
/// let re = PikeVM::builder()
/// .syntax(syntax::Config::new().utf8(false))
/// .thompson(thompson::Config::new().utf8(false))
/// .build(r"foo(?-u:[^b])ar.*")?;
/// let mut cache = re.create_cache();
///
/// let haystack = b"\xFEfoo\xFFarzz\xE2\x98\xFF\n";
/// let expected = Some(Match::must(0, 1..9));
/// let got = re.find_iter(&mut cache, haystack).next();
/// assert_eq!(expected, got);
/// // Notice that `(?-u:[^b])` matches invalid UTF-8,
/// // but the subsequent `.*` does not! Disabling UTF-8
/// // on the syntax permits this.
/// //
/// // N.B. This example does not show the impact of
/// // disabling UTF-8 mode on a PikeVM Config, since that
/// // only impacts regexes that can produce matches of
/// // length 0.
/// assert_eq!(b"foo\xFFarzz", &haystack[got.unwrap().range()]);
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[derive(Clone, Debug)]
pub struct Builder {
config: Config,
#[cfg(feature = "syntax")]
thompson: thompson::Compiler,
}
impl Builder {
/// Create a new PikeVM builder with its default configuration.
pub fn new() -> Builder {
Builder {
config: Config::default(),
#[cfg(feature = "syntax")]
thompson: thompson::Compiler::new(),
}
}
/// Build a `PikeVM` from the given pattern.
///
/// If there was a problem parsing or compiling the pattern, then an error
/// is returned.
#[cfg(feature = "syntax")]
pub fn build(&self, pattern: &str) -> Result<PikeVM, BuildError> {
self.build_many(&[pattern])
}
/// Build a `PikeVM` from the given patterns.
#[cfg(feature = "syntax")]
pub fn build_many<P: AsRef<str>>(
&self,
patterns: &[P],
) -> Result<PikeVM, BuildError> {
let nfa = self.thompson.build_many(patterns)?;
self.build_from_nfa(nfa)
}
/// Build a `PikeVM` directly from its NFA.
///
/// Note that when using this method, any configuration that applies to the
/// construction of the NFA itself will of course be ignored, since the NFA
/// given here is already built.
pub fn build_from_nfa(&self, nfa: NFA) -> Result<PikeVM, BuildError> {
// If the NFA has no captures, then the PikeVM doesn't work since it
// relies on them in order to report match locations. However, in
// the special case of an NFA with no patterns, it is allowed, since
// no matches can ever be produced. And importantly, an NFA with no
// patterns has no capturing groups anyway, so this is necessary to
// permit the PikeVM to work with regexes with zero patterns.
if !nfa.has_capture() && nfa.pattern_len() > 0 {
return Err(BuildError::missing_captures());
}
nfa.look_set_any().available().map_err(BuildError::word)?;
Ok(PikeVM { config: self.config.clone(), nfa })
}
/// Apply the given `PikeVM` configuration options to this builder.
pub fn configure(&mut self, config: Config) -> &mut Builder {
self.config = self.config.overwrite(config);
self
}
/// Set the syntax configuration for this builder using
/// [`syntax::Config`](crate::util::syntax::Config).
///
/// This permits setting things like case insensitivity, Unicode and multi
/// line mode.
///
/// These settings only apply when constructing a PikeVM directly from a
/// pattern.
#[cfg(feature = "syntax")]
pub fn syntax(
&mut self,
config: crate::util::syntax::Config,
) -> &mut Builder {
self.thompson.syntax(config);
self
}
/// Set the Thompson NFA configuration for this builder using
/// [`nfa::thompson::Config`](crate::nfa::thompson::Config).
///
/// This permits setting things like if additional time should be spent
/// shrinking the size of the NFA.
///
/// These settings only apply when constructing a PikeVM directly from a
/// pattern.
#[cfg(feature = "syntax")]
pub fn thompson(&mut self, config: thompson::Config) -> &mut Builder {
self.thompson.configure(config);
self
}
}
/// A virtual machine for executing regex searches with capturing groups.
///
/// # Infallible APIs
///
/// Unlike most other regex engines in this crate, a `PikeVM` never returns an
/// error at search time. It supports all [`Anchored`] configurations, never
/// quits and works on haystacks of arbitrary length.
///
/// There are two caveats to mention though:
///
/// * If an invalid pattern ID is given to a search via [`Anchored::Pattern`],
/// then the PikeVM will report "no match." This is consistent with all other
/// regex engines in this crate.
/// * When using [`PikeVM::which_overlapping_matches`] with a [`PatternSet`]
/// that has insufficient capacity to store all valid pattern IDs, then if a
/// match occurs for a `PatternID` that cannot be inserted, it is silently
/// dropped as if it did not match.
///
/// # Advice
///
/// The `PikeVM` is generally the most "powerful" regex engine in this crate.
/// "Powerful" in this context means that it can handle any regular expression
/// that is parseable by `regex-syntax` and any size haystack. Regretably,
/// the `PikeVM` is also simultaneously often the _slowest_ regex engine in
/// practice. This results in an annoying situation where one generally tries
/// to pick any other regex engine (or perhaps none at all) before being
/// forced to fall back to a `PikeVM`.
///
/// For example, a common strategy for dealing with capturing groups is to
/// actually look for the overall match of the regex using a faster regex
/// engine, like a [lazy DFA](crate::hybrid::regex::Regex). Once the overall
/// match is found, one can then run the `PikeVM` on just the match span to
/// find the spans of the capturing groups. In this way, the faster regex
/// engine does the majority of the work, while the `PikeVM` only lends its
/// power in a more limited role.
///
/// Unfortunately, this isn't always possible because the faster regex engines
/// don't support all of the regex features in `regex-syntax`. This notably
/// includes (and is currently limited to) Unicode word boundaries. So if
/// your pattern has Unicode word boundaries, you typically can't use a
/// DFA-based regex engine at all (unless you [enable heuristic support for
/// it](crate::hybrid::dfa::Config::unicode_word_boundary)). (The [one-pass
/// DFA](crate::dfa::onepass::DFA) can handle Unicode word boundaries for
/// anchored searches only, but in a cruel sort of joke, many Unicode features
/// tend to result in making the regex _not_ one-pass.)
///
/// # Example
///
/// This example shows that the `PikeVM` implements Unicode word boundaries
/// correctly by default.
///
/// ```
/// # if cfg!(miri) { return Ok(()); } // miri takes too long
/// use regex_automata::{nfa::thompson::pikevm::PikeVM, Match};
///
/// let re = PikeVM::new(r"\b\w+\b")?;
/// let mut cache = re.create_cache();
///
/// let mut it = re.find_iter(&mut cache, "Шерлок Холмс");
/// assert_eq!(Some(Match::must(0, 0..12)), it.next());
/// assert_eq!(Some(Match::must(0, 13..23)), it.next());
/// assert_eq!(None, it.next());
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[derive(Clone, Debug)]
pub struct PikeVM {
config: Config,
nfa: NFA,
}
impl PikeVM {
/// Parse the given regular expression using the default configuration and
/// return the corresponding `PikeVM`.
///
/// If you want a non-default configuration, then use the [`Builder`] to
/// set your own configuration.
///
/// # Example
///
/// ```
/// use regex_automata::{nfa::thompson::pikevm::PikeVM, Match};
///
/// let re = PikeVM::new("foo[0-9]+bar")?;
/// let mut cache = re.create_cache();
/// assert_eq!(
/// Some(Match::must(0, 3..14)),
/// re.find_iter(&mut cache, "zzzfoo12345barzzz").next(),
/// );
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[cfg(feature = "syntax")]
pub fn new(pattern: &str) -> Result<PikeVM, BuildError> {
PikeVM::builder().build(pattern)
}
/// Like `new`, but parses multiple patterns into a single "multi regex."
/// This similarly uses the default regex configuration.
///
/// # Example
///
/// ```
/// use regex_automata::{nfa::thompson::pikevm::PikeVM, Match};
///
/// let re = PikeVM::new_many(&["[a-z]+", "[0-9]+"])?;
/// let mut cache = re.create_cache();
///
/// let mut it = re.find_iter(&mut cache, "abc 1 foo 4567 0 quux");
/// assert_eq!(Some(Match::must(0, 0..3)), it.next());
/// assert_eq!(Some(Match::must(1, 4..5)), it.next());
/// assert_eq!(Some(Match::must(0, 6..9)), it.next());
/// assert_eq!(Some(Match::must(1, 10..14)), it.next());
/// assert_eq!(Some(Match::must(1, 15..16)), it.next());
/// assert_eq!(Some(Match::must(0, 17..21)), it.next());
/// assert_eq!(None, it.next());
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[cfg(feature = "syntax")]
pub fn new_many<P: AsRef<str>>(
patterns: &[P],
) -> Result<PikeVM, BuildError> {
PikeVM::builder().build_many(patterns)
}
/// Like `new`, but builds a PikeVM directly from an NFA. This is useful
/// if you already have an NFA, or even if you hand-assembled the NFA.
///
/// # Example
///
/// This shows how to hand assemble a regular expression via its HIR,
/// compile an NFA from it and build a PikeVM from the NFA.
///
/// ```
/// use regex_automata::{nfa::thompson::{NFA, pikevm::PikeVM}, Match};
/// use regex_syntax::hir::{Hir, Class, ClassBytes, ClassBytesRange};
///
/// let hir = Hir::class(Class::Bytes(ClassBytes::new(vec![
/// ClassBytesRange::new(b'0', b'9'),
/// ClassBytesRange::new(b'A', b'Z'),
/// ClassBytesRange::new(b'_', b'_'),
/// ClassBytesRange::new(b'a', b'z'),
/// ])));
///
/// let config = NFA::config().nfa_size_limit(Some(1_000));
/// let nfa = NFA::compiler().configure(config).build_from_hir(&hir)?;
///
/// let re = PikeVM::new_from_nfa(nfa)?;
/// let (mut cache, mut caps) = (re.create_cache(), re.create_captures());
/// let expected = Some(Match::must(0, 3..4));
/// re.captures(&mut cache, "!@#A#@!", &mut caps);
/// assert_eq!(expected, caps.get_match());
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
pub fn new_from_nfa(nfa: NFA) -> Result<PikeVM, BuildError> {
PikeVM::builder().build_from_nfa(nfa)
}
/// Create a new `PikeVM` that matches every input.
///
/// # Example
///
/// ```
/// use regex_automata::{nfa::thompson::pikevm::PikeVM, Match};
///
/// let re = PikeVM::always_match()?;
/// let mut cache = re.create_cache();
///
/// let expected = Match::must(0, 0..0);
/// assert_eq!(Some(expected), re.find_iter(&mut cache, "").next());
/// assert_eq!(Some(expected), re.find_iter(&mut cache, "foo").next());
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
pub fn always_match() -> Result<PikeVM, BuildError> {
let nfa = thompson::NFA::always_match();
PikeVM::new_from_nfa(nfa)
}
/// Create a new `PikeVM` that never matches any input.
///
/// # Example
///
/// ```
/// use regex_automata::nfa::thompson::pikevm::PikeVM;
///
/// let re = PikeVM::never_match()?;
/// let mut cache = re.create_cache();
///
/// assert_eq!(None, re.find_iter(&mut cache, "").next());
/// assert_eq!(None, re.find_iter(&mut cache, "foo").next());
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
pub fn never_match() -> Result<PikeVM, BuildError> {
let nfa = thompson::NFA::never_match();
PikeVM::new_from_nfa(nfa)
}
/// Return a default configuration for a `PikeVM`.
///
/// This is a convenience routine to avoid needing to import the `Config`
/// type when customizing the construction of a `PikeVM`.
///
/// # Example
///
/// This example shows how to disable UTF-8 mode. When UTF-8 mode is
/// disabled, zero-width matches that split a codepoint are allowed.
/// Otherwise they are never reported.
///
/// In the code below, notice that `""` is permitted to match positions
/// that split the encoding of a codepoint.
///
/// ```
/// use regex_automata::{nfa::thompson::{self, pikevm::PikeVM}, Match};
///
/// let re = PikeVM::builder()
/// .thompson(thompson::Config::new().utf8(false))
/// .build(r"")?;
/// let mut cache = re.create_cache();
///
/// let haystack = "a☃z";
/// let mut it = re.find_iter(&mut cache, haystack);
/// assert_eq!(Some(Match::must(0, 0..0)), it.next());
/// assert_eq!(Some(Match::must(0, 1..1)), it.next());
/// assert_eq!(Some(Match::must(0, 2..2)), it.next());
/// assert_eq!(Some(Match::must(0, 3..3)), it.next());
/// assert_eq!(Some(Match::must(0, 4..4)), it.next());
/// assert_eq!(Some(Match::must(0, 5..5)), it.next());
/// assert_eq!(None, it.next());
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
pub fn config() -> Config {
Config::new()
}
/// Return a builder for configuring the construction of a `PikeVM`.
///
/// This is a convenience routine to avoid needing to import the
/// [`Builder`] type in common cases.
///
/// # Example
///
/// This example shows how to use the builder to disable UTF-8 mode
/// everywhere.
///
/// ```
/// use regex_automata::{
/// nfa::thompson::{self, pikevm::PikeVM},
/// util::syntax,
/// Match,
/// };
///
/// let re = PikeVM::builder()
/// .syntax(syntax::Config::new().utf8(false))
/// .thompson(thompson::Config::new().utf8(false))
/// .build(r"foo(?-u:[^b])ar.*")?;
/// let (mut cache, mut caps) = (re.create_cache(), re.create_captures());
///
/// let haystack = b"\xFEfoo\xFFarzz\xE2\x98\xFF\n";
/// let expected = Some(Match::must(0, 1..9));
/// re.captures(&mut cache, haystack, &mut caps);
/// assert_eq!(expected, caps.get_match());
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
pub fn builder() -> Builder {
Builder::new()
}
/// Create a new empty set of capturing groups that is guaranteed to be
/// valid for the search APIs on this `PikeVM`.
///
/// A `Captures` value created for a specific `PikeVM` cannot be used with
/// any other `PikeVM`.
///
/// This is a convenience function for [`Captures::all`]. See the
/// [`Captures`] documentation for an explanation of its alternative
/// constructors that permit the `PikeVM` to do less work during a search,
/// and thus might make it faster.
pub fn create_captures(&self) -> Captures {
Captures::all(self.get_nfa().group_info().clone())
}
/// Create a new cache for this `PikeVM`.
///
/// The cache returned should only be used for searches for this
/// `PikeVM`. If you want to reuse the cache for another `PikeVM`, then
/// you must call [`Cache::reset`] with that `PikeVM` (or, equivalently,
/// [`PikeVM::reset_cache`]).
pub fn create_cache(&self) -> Cache {
Cache::new(self)
}
/// Reset the given cache such that it can be used for searching with the
/// this `PikeVM` (and only this `PikeVM`).
///
/// A cache reset permits reusing memory already allocated in this cache
/// with a different `PikeVM`.
///
/// # Example
///
/// This shows how to re-purpose a cache for use with a different `PikeVM`.
///
/// ```
/// # if cfg!(miri) { return Ok(()); } // miri takes too long
/// use regex_automata::{nfa::thompson::pikevm::PikeVM, Match};
///
/// let re1 = PikeVM::new(r"\w")?;
/// let re2 = PikeVM::new(r"\W")?;
///
/// let mut cache = re1.create_cache();
/// assert_eq!(
/// Some(Match::must(0, 0..2)),
/// re1.find_iter(&mut cache, "Δ").next(),
/// );
///
/// // Using 'cache' with re2 is not allowed. It may result in panics or
/// // incorrect results. In order to re-purpose the cache, we must reset
/// // it with the PikeVM we'd like to use it with.
/// //
/// // Similarly, after this reset, using the cache with 're1' is also not
/// // allowed.
/// re2.reset_cache(&mut cache);
/// assert_eq!(
/// Some(Match::must(0, 0..3)),
/// re2.find_iter(&mut cache, "☃").next(),
/// );
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
pub fn reset_cache(&self, cache: &mut Cache) {
cache.reset(self);
}
/// Returns the total number of patterns compiled into this `PikeVM`.
///
/// In the case of a `PikeVM` that contains no patterns, this returns `0`.
///
/// # Example
///
/// This example shows the pattern length for a `PikeVM` that never
/// matches:
///
/// ```
/// use regex_automata::nfa::thompson::pikevm::PikeVM;
///
/// let re = PikeVM::never_match()?;
/// assert_eq!(re.pattern_len(), 0);
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// And another example for a `PikeVM` that matches at every position:
///
/// ```
/// use regex_automata::nfa::thompson::pikevm::PikeVM;
///
/// let re = PikeVM::always_match()?;
/// assert_eq!(re.pattern_len(), 1);
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// And finally, a `PikeVM` that was constructed from multiple patterns:
///
/// ```
/// use regex_automata::nfa::thompson::pikevm::PikeVM;
///
/// let re = PikeVM::new_many(&["[0-9]+", "[a-z]+", "[A-Z]+"])?;
/// assert_eq!(re.pattern_len(), 3);
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
pub fn pattern_len(&self) -> usize {
self.nfa.pattern_len()
}
/// Return the config for this `PikeVM`.
#[inline]
pub fn get_config(&self) -> &Config {
&self.config
}
/// Returns a reference to the underlying NFA.
#[inline]
pub fn get_nfa(&self) -> &NFA {
&self.nfa
}
}
impl PikeVM {
/// Returns true if and only if this `PikeVM` matches the given haystack.
///
/// This routine may short circuit if it knows that scanning future
/// input will never lead to a different result. In particular, if the
/// underlying NFA enters a match state, then this routine will return
/// `true` immediately without inspecting any future input. (Consider how
/// this might make a difference given the regex `a+` on the haystack
/// `aaaaaaaaaaaaaaa`. This routine can stop after it sees the first `a`,
/// but routines like `find` need to continue searching because `+` is
/// greedy by default.)
///
/// # Example
///
/// This shows basic usage:
///
/// ```
/// use regex_automata::nfa::thompson::pikevm::PikeVM;
///
/// let re = PikeVM::new("foo[0-9]+bar")?;
/// let mut cache = re.create_cache();
///
/// assert!(re.is_match(&mut cache, "foo12345bar"));
/// assert!(!re.is_match(&mut cache, "foobar"));
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// # Example: consistency with search APIs
///
/// `is_match` is guaranteed to return `true` whenever `find` returns a
/// match. This includes searches that are executed entirely within a
/// codepoint:
///
/// ```
/// use regex_automata::{nfa::thompson::pikevm::PikeVM, Input};
///
/// let re = PikeVM::new("a*")?;
/// let mut cache = re.create_cache();
///
/// assert!(!re.is_match(&mut cache, Input::new("☃").span(1..2)));
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// Notice that when UTF-8 mode is disabled, then the above reports a
/// match because the restriction against zero-width matches that split a
/// codepoint has been lifted:
///
/// ```
/// use regex_automata::{nfa::thompson::{pikevm::PikeVM, NFA}, Input};
///
/// let re = PikeVM::builder()
/// .thompson(NFA::config().utf8(false))
/// .build("a*")?;
/// let mut cache = re.create_cache();
///
/// assert!(re.is_match(&mut cache, Input::new("☃").span(1..2)));
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[inline]
pub fn is_match<'h, I: Into<Input<'h>>>(
&self,
cache: &mut Cache,
input: I,
) -> bool {
let input = input.into().earliest(true);
self.search_slots(cache, &input, &mut []).is_some()
}
/// Executes a leftmost forward search and returns a `Match` if one exists.
///
/// This routine only includes the overall match span. To get access to the
/// individual spans of each capturing group, use [`PikeVM::captures`].
///
/// # Example
///
/// Leftmost first match semantics corresponds to the match with the
/// smallest starting offset, but where the end offset is determined by
/// preferring earlier branches in the original regular expression. For
/// example, `Sam|Samwise` will match `Sam` in `Samwise`, but `Samwise|Sam`
/// will match `Samwise` in `Samwise`.
///
/// Generally speaking, the "leftmost first" match is how most backtracking
/// regular expressions tend to work. This is in contrast to POSIX-style
/// regular expressions that yield "leftmost longest" matches. Namely,
/// both `Sam|Samwise` and `Samwise|Sam` match `Samwise` when using
/// leftmost longest semantics. (This crate does not currently support
/// leftmost longest semantics.)
///
/// ```
/// use regex_automata::{nfa::thompson::pikevm::PikeVM, Match};
///
/// let re = PikeVM::new("foo[0-9]+")?;
/// let mut cache = re.create_cache();
/// let expected = Match::must(0, 0..8);
/// assert_eq!(Some(expected), re.find(&mut cache, "foo12345"));
///
/// // Even though a match is found after reading the first byte (`a`),
/// // the leftmost first match semantics demand that we find the earliest
/// // match that prefers earlier parts of the pattern over later parts.
/// let re = PikeVM::new("abc|a")?;
/// let mut cache = re.create_cache();
/// let expected = Match::must(0, 0..3);
/// assert_eq!(Some(expected), re.find(&mut cache, "abc"));
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[inline]
pub fn find<'h, I: Into<Input<'h>>>(
&self,
cache: &mut Cache,
input: I,
) -> Option<Match> {
let input = input.into();
if self.get_nfa().pattern_len() == 1 {
let mut slots = [None, None];
let pid = self.search_slots(cache, &input, &mut slots)?;
let start = slots[0].unwrap().get();
let end = slots[1].unwrap().get();
return Some(Match::new(pid, Span { start, end }));
}
let ginfo = self.get_nfa().group_info();
let slots_len = ginfo.implicit_slot_len();
let mut slots = vec![None; slots_len];
let pid = self.search_slots(cache, &input, &mut slots)?;
let start = slots[pid.as_usize() * 2].unwrap().get();
let end = slots[pid.as_usize() * 2 + 1].unwrap().get();
Some(Match::new(pid, Span { start, end }))
}
/// Executes a leftmost forward search and writes the spans of capturing
/// groups that participated in a match into the provided [`Captures`]
/// value. If no match was found, then [`Captures::is_match`] is guaranteed
/// to return `false`.
///
/// # Example
///
/// ```
/// use regex_automata::{nfa::thompson::pikevm::PikeVM, Span};
///
/// let re = PikeVM::new(r"^([0-9]{4})-([0-9]{2})-([0-9]{2})$")?;
/// let (mut cache, mut caps) = (re.create_cache(), re.create_captures());
///
/// re.captures(&mut cache, "2010-03-14", &mut caps);
/// assert!(caps.is_match());
/// assert_eq!(Some(Span::from(0..4)), caps.get_group(1));
/// assert_eq!(Some(Span::from(5..7)), caps.get_group(2));
/// assert_eq!(Some(Span::from(8..10)), caps.get_group(3));
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[inline]
pub fn captures<'h, I: Into<Input<'h>>>(
&self,
cache: &mut Cache,
input: I,
caps: &mut Captures,
) {
self.search(cache, &input.into(), caps)
}
/// Returns an iterator over all non-overlapping leftmost matches in the
/// given bytes. If no match exists, then the iterator yields no elements.
///
/// # Example
///
/// ```
/// use regex_automata::{nfa::thompson::pikevm::PikeVM, Match};
///
/// let re = PikeVM::new("foo[0-9]+")?;
/// let mut cache = re.create_cache();
///
/// let text = "foo1 foo12 foo123";
/// let matches: Vec<Match> = re.find_iter(&mut cache, text).collect();
/// assert_eq!(matches, vec![
/// Match::must(0, 0..4),
/// Match::must(0, 5..10),
/// Match::must(0, 11..17),
/// ]);
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[inline]
pub fn find_iter<'r, 'c, 'h, I: Into<Input<'h>>>(
&'r self,
cache: &'c mut Cache,
input: I,
) -> FindMatches<'r, 'c, 'h> {
let caps = Captures::matches(self.get_nfa().group_info().clone());
let it = iter::Searcher::new(input.into());
FindMatches { re: self, cache, caps, it }
}
/// Returns an iterator over all non-overlapping `Captures` values. If no
/// match exists, then the iterator yields no elements.
///
/// This yields the same matches as [`PikeVM::find_iter`], but it includes
/// the spans of all capturing groups that participate in each match.
///
/// **Tip:** See [`util::iter::Searcher`](crate::util::iter::Searcher) for
/// how to correctly iterate over all matches in a haystack while avoiding
/// the creation of a new `Captures` value for every match. (Which you are
/// forced to do with an `Iterator`.)
///
/// # Example
///
/// ```
/// use regex_automata::{nfa::thompson::pikevm::PikeVM, Span};
///
/// let re = PikeVM::new("foo(?P<numbers>[0-9]+)")?;
/// let mut cache = re.create_cache();
///
/// let text = "foo1 foo12 foo123";
/// let matches: Vec<Span> = re
/// .captures_iter(&mut cache, text)
/// // The unwrap is OK since 'numbers' matches if the pattern matches.
/// .map(|caps| caps.get_group_by_name("numbers").unwrap())
/// .collect();
/// assert_eq!(matches, vec![
/// Span::from(3..4),
/// Span::from(8..10),
/// Span::from(14..17),
/// ]);
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[inline]
pub fn captures_iter<'r, 'c, 'h, I: Into<Input<'h>>>(
&'r self,
cache: &'c mut Cache,
input: I,
) -> CapturesMatches<'r, 'c, 'h> {
let caps = self.create_captures();
let it = iter::Searcher::new(input.into());
CapturesMatches { re: self, cache, caps, it }
}
}
impl PikeVM {
/// Executes a leftmost forward search and writes the spans of capturing
/// groups that participated in a match into the provided [`Captures`]
/// value. If no match was found, then [`Captures::is_match`] is guaranteed
/// to return `false`.
///
/// This is like [`PikeVM::captures`], but it accepts a concrete `&Input`
/// instead of an `Into<Input>`.
///
/// # Example: specific pattern search
///
/// This example shows how to build a multi-PikeVM that permits searching
/// for specific patterns.
///
/// ```
/// use regex_automata::{
/// nfa::thompson::pikevm::PikeVM,
/// Anchored, Match, PatternID, Input,
/// };
///
/// let re = PikeVM::new_many(&["[a-z0-9]{6}", "[a-z][a-z0-9]{5}"])?;
/// let (mut cache, mut caps) = (re.create_cache(), re.create_captures());
/// let haystack = "foo123";
///
/// // Since we are using the default leftmost-first match and both
/// // patterns match at the same starting position, only the first pattern
/// // will be returned in this case when doing a search for any of the
/// // patterns.
/// let expected = Some(Match::must(0, 0..6));
/// re.search(&mut cache, &Input::new(haystack), &mut caps);
/// assert_eq!(expected, caps.get_match());
///
/// // But if we want to check whether some other pattern matches, then we
/// // can provide its pattern ID.
/// let expected = Some(Match::must(1, 0..6));
/// let input = Input::new(haystack)
/// .anchored(Anchored::Pattern(PatternID::must(1)));
/// re.search(&mut cache, &input, &mut caps);
/// assert_eq!(expected, caps.get_match());
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// # Example: specifying the bounds of a search
///
/// This example shows how providing the bounds of a search can produce
/// different results than simply sub-slicing the haystack.
///
/// ```
/// # if cfg!(miri) { return Ok(()); } // miri takes too long
/// use regex_automata::{nfa::thompson::pikevm::PikeVM, Match, Input};
///
/// let re = PikeVM::new(r"\b[0-9]{3}\b")?;
/// let (mut cache, mut caps) = (re.create_cache(), re.create_captures());
/// let haystack = "foo123bar";
///
/// // Since we sub-slice the haystack, the search doesn't know about
/// // the larger context and assumes that `123` is surrounded by word
/// // boundaries. And of course, the match position is reported relative
/// // to the sub-slice as well, which means we get `0..3` instead of
/// // `3..6`.
/// let expected = Some(Match::must(0, 0..3));
/// re.search(&mut cache, &Input::new(&haystack[3..6]), &mut caps);
/// assert_eq!(expected, caps.get_match());
///
/// // But if we provide the bounds of the search within the context of the
/// // entire haystack, then the search can take the surrounding context
/// // into account. (And if we did find a match, it would be reported
/// // as a valid offset into `haystack` instead of its sub-slice.)
/// let expected = None;
/// let input = Input::new(haystack).range(3..6);
/// re.search(&mut cache, &input, &mut caps);
/// assert_eq!(expected, caps.get_match());
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[inline]
pub fn search(
&self,
cache: &mut Cache,
input: &Input<'_>,
caps: &mut Captures,
) {
caps.set_pattern(None);
let pid = self.search_slots(cache, input, caps.slots_mut());
caps.set_pattern(pid);
}
/// Executes a leftmost forward search and writes the spans of capturing
/// groups that participated in a match into the provided `slots`, and
/// returns the matching pattern ID. The contents of the slots for patterns
/// other than the matching pattern are unspecified. If no match was found,
/// then `None` is returned and the contents of `slots` is unspecified.
///
/// This is like [`PikeVM::search`], but it accepts a raw slots slice
/// instead of a `Captures` value. This is useful in contexts where you
/// don't want or need to allocate a `Captures`.
///
/// It is legal to pass _any_ number of slots to this routine. If the regex
/// engine would otherwise write a slot offset that doesn't fit in the
/// provided slice, then it is simply skipped. In general though, there are
/// usually three slice lengths you might want to use:
///
/// * An empty slice, if you only care about which pattern matched.
/// * A slice with
/// [`pattern_len() * 2`](crate::nfa::thompson::NFA::pattern_len)
/// slots, if you only care about the overall match spans for each matching
/// pattern.
/// * A slice with
/// [`slot_len()`](crate::util::captures::GroupInfo::slot_len) slots, which
/// permits recording match offsets for every capturing group in every
/// pattern.
///
/// # Example
///
/// This example shows how to find the overall match offsets in a
/// multi-pattern search without allocating a `Captures` value. Indeed, we
/// can put our slots right on the stack.
///
/// ```
/// # if cfg!(miri) { return Ok(()); } // miri takes too long
/// use regex_automata::{nfa::thompson::pikevm::PikeVM, PatternID, Input};
///
/// let re = PikeVM::new_many(&[
/// r"\pL+",
/// r"\d+",
/// ])?;
/// let mut cache = re.create_cache();
/// let input = Input::new("!@#123");
///
/// // We only care about the overall match offsets here, so we just
/// // allocate two slots for each pattern. Each slot records the start
/// // and end of the match.
/// let mut slots = [None; 4];
/// let pid = re.search_slots(&mut cache, &input, &mut slots);
/// assert_eq!(Some(PatternID::must(1)), pid);
///
/// // The overall match offsets are always at 'pid * 2' and 'pid * 2 + 1'.
/// // See 'GroupInfo' for more details on the mapping between groups and
/// // slot indices.
/// let slot_start = pid.unwrap().as_usize() * 2;
/// let slot_end = slot_start + 1;
/// assert_eq!(Some(3), slots[slot_start].map(|s| s.get()));
/// assert_eq!(Some(6), slots[slot_end].map(|s| s.get()));
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[inline]
pub fn search_slots(
&self,
cache: &mut Cache,
input: &Input<'_>,
slots: &mut [Option<NonMaxUsize>],
) -> Option<PatternID> {
let utf8empty = self.get_nfa().has_empty() && self.get_nfa().is_utf8();
if !utf8empty {
return self.search_slots_imp(cache, input, slots);
}
// There is an unfortunate special case where if the regex can
// match the empty string and UTF-8 mode is enabled, the search
// implementation requires that the slots have at least as much space
// to report the bounds of any match. This is so zero-width matches
// that split a codepoint can be filtered out.
//
// Note that if utf8empty is true, we specialize the case for when
// the number of patterns is 1. In that case, we can just use a stack
// allocation. Otherwise we resort to a heap allocation, which we
// convince ourselves we're fine with due to the pathological nature of
// this case.
let min = self.get_nfa().group_info().implicit_slot_len();
if slots.len() >= min {
return self.search_slots_imp(cache, input, slots);
}
if self.get_nfa().pattern_len() == 1 {
let mut enough = [None, None];
let got = self.search_slots_imp(cache, input, &mut enough);
// This is OK because we know `enough_slots` is strictly bigger
// than `slots`, otherwise this special case isn't reached.
slots.copy_from_slice(&enough[..slots.len()]);
return got;
}
let mut enough = vec![None; min];
let got = self.search_slots_imp(cache, input, &mut enough);
// This is OK because we know `enough_slots` is strictly bigger than
// `slots`, otherwise this special case isn't reached.
slots.copy_from_slice(&enough[..slots.len()]);
got
}
/// This is the actual implementation of `search_slots_imp` that
/// doesn't account for the special case when 1) the NFA has UTF-8 mode
/// enabled, 2) the NFA can match the empty string and 3) the caller has
/// provided an insufficient number of slots to record match offsets.
#[inline(never)]
fn search_slots_imp(
&self,
cache: &mut Cache,
input: &Input<'_>,
slots: &mut [Option<NonMaxUsize>],
) -> Option<PatternID> {
let utf8empty = self.get_nfa().has_empty() && self.get_nfa().is_utf8();
let (pid, end) = match self.search_imp(cache, input, slots) {
None => return None,
Some(pid) if !utf8empty => return Some(pid),
Some(pid) => {
let slot_start = pid.as_usize() * 2;
let slot_end = slot_start + 1;
// OK because we know we have a match and we know our caller
// provided slots are big enough (which we make true above if
// the caller didn't). Namely, we're only here when 'utf8empty'
// is true, and when that's true, we require slots for every
// pattern.
(pid, slots[slot_end].unwrap().get())
}
};
empty::skip_splits_fwd(input, pid, end, |input| {
let pid = match self.search_imp(cache, input, slots) {
None => return Ok(None),
Some(pid) => pid,
};
let slot_start = pid.as_usize() * 2;
let slot_end = slot_start + 1;
Ok(Some((pid, slots[slot_end].unwrap().get())))
})
// OK because the PikeVM never errors.
.unwrap()
}
/// Writes the set of patterns that match anywhere in the given search
/// configuration to `patset`. If multiple patterns match at the same
/// position and this `PikeVM` was configured with [`MatchKind::All`]
/// semantics, then all matching patterns are written to the given set.
///
/// Unless all of the patterns in this `PikeVM` are anchored, then
/// generally speaking, this will visit every byte in the haystack.
///
/// This search routine *does not* clear the pattern set. This gives some
/// flexibility to the caller (e.g., running multiple searches with the
/// same pattern set), but does make the API bug-prone if you're reusing
/// the same pattern set for multiple searches but intended them to be
/// independent.
///
/// If a pattern ID matched but the given `PatternSet` does not have
/// sufficient capacity to store it, then it is not inserted and silently
/// dropped.
///
/// # Example
///
/// This example shows how to find all matching patterns in a haystack,
/// even when some patterns match at the same position as other patterns.
///
/// ```
/// # if cfg!(miri) { return Ok(()); } // miri takes too long
/// use regex_automata::{
/// nfa::thompson::pikevm::PikeVM,
/// Input, MatchKind, PatternSet,
/// };
///
/// let patterns = &[
/// r"\w+", r"\d+", r"\pL+", r"foo", r"bar", r"barfoo", r"foobar",
/// ];
/// let re = PikeVM::builder()
/// .configure(PikeVM::config().match_kind(MatchKind::All))
/// .build_many(patterns)?;
/// let mut cache = re.create_cache();
///
/// let input = Input::new("foobar");
/// let mut patset = PatternSet::new(re.pattern_len());
/// re.which_overlapping_matches(&mut cache, &input, &mut patset);
/// let expected = vec![0, 2, 3, 4, 6];
/// let got: Vec<usize> = patset.iter().map(|p| p.as_usize()).collect();
/// assert_eq!(expected, got);
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[inline]
pub fn which_overlapping_matches(
&self,
cache: &mut Cache,
input: &Input<'_>,
patset: &mut PatternSet,
) {
self.which_overlapping_imp(cache, input, patset)
}
}
impl PikeVM {
/// The implementation of standard leftmost search.
///
/// Capturing group spans are written to `slots`, but only if requested.
/// `slots` can be any length. Any slot in the NFA that is activated but
/// which is out of bounds for the given `slots` is ignored.
fn search_imp(
&self,
cache: &mut Cache,
input: &Input<'_>,
slots: &mut [Option<NonMaxUsize>],
) -> Option<PatternID> {
cache.setup_search(slots.len());
if input.is_done() {
return None;
}
// Why do we even care about this? Well, in our 'Captures'
// representation, we use usize::MAX as a sentinel to indicate "no
// match." This isn't problematic so long as our haystack doesn't have
// a maximal length. Byte slices are guaranteed by Rust to have a
// length that fits into isize, and so this assert should always pass.
// But we put it here to make our assumption explicit.
assert!(
input.haystack().len() < core::usize::MAX,
"byte slice lengths must be less than usize MAX",
);
instrument!(|c| c.reset(&self.nfa));
// Whether we want to visit all match states instead of emulating the
// 'leftmost' semantics of typical backtracking regex engines.
let allmatches =
self.config.get_match_kind().continue_past_first_match();
let (anchored, start_id) = match self.start_config(input) {
None => return None,
Some(config) => config,
};
let pre =
if anchored { None } else { self.get_config().get_prefilter() };
let Cache { ref mut stack, ref mut curr, ref mut next } = cache;
let mut pid = None;
// Yes, our search doesn't end at input.end(), but includes it. This
// is necessary because matches are delayed by one byte, just like
// how the DFA engines work. The delay is used to handle look-behind
// assertions. In the case of the PikeVM, the delay is implemented
// by not considering a match to exist until it is visited in
// 'steps'. Technically, we know a match exists in the previous
// iteration via 'epsilon_closure'. (It's the same thing in NFA-to-DFA
// determinization. We don't mark a DFA state as a match state if it
// contains an NFA match state, but rather, whether the DFA state was
// generated by a transition from a DFA state that contains an NFA
// match state.)
let mut at = input.start();
while at <= input.end() {
// If we have no states left to visit, then there are some cases
// where we know we can quit early or even skip ahead.
if curr.set.is_empty() {
// We have a match and we haven't been instructed to continue
// on even after finding a match, so we can quit.
if pid.is_some() && !allmatches {
break;
}
// If we're running an anchored search and we've advanced
// beyond the start position with no other states to try, then
// we will never observe a match and thus can stop.
if anchored && at > input.start() {
break;
}
// If there no states left to explore at this position and we
// know we can't terminate early, then we are effectively at
// the starting state of the NFA. If we fell through here,
// we'd end up adding our '(?s-u:.)*?' prefix and it would be
// the only thing in 'curr'. So we might as well just skip
// ahead until we find something that we know might advance us
// forward.
if let Some(ref pre) = pre {
let span = Span::from(at..input.end());
match pre.find(input.haystack(), span) {
None => break,
Some(ref span) => at = span.start,
}
}
}
// Instead of using the NFA's unanchored start state, we actually
// always use its anchored starting state. As a result, when doing
// an unanchored search, we need to simulate our own '(?s-u:.)*?'
// prefix, to permit a match to appear anywhere.
//
// Now, we don't *have* to do things this way. We could use the
// NFA's unanchored starting state and do one 'epsilon_closure'
// call from that starting state before the main loop here. And
// that is just as correct. However, it turns out to be slower
// than our approach here because it slightly increases the cost
// of processing each byte by requiring us to visit more NFA
// states to deal with the additional NFA states in the unanchored
// prefix. By simulating it explicitly here, we lower those costs
// substantially. The cost is itself small, but it adds up for
// large haystacks.
//
// In order to simulate the '(?s-u:.)*?' prefix---which is not
// greedy---we are careful not to perform an epsilon closure on
// the start state if we already have a match. Namely, if we
// did otherwise, we would never reach a terminating condition
// because there would always be additional states to process.
// In effect, the exclusion of running 'epsilon_closure' when
// we have a match corresponds to the "dead" states we have in
// our DFA regex engines. Namely, in a DFA, match states merely
// instruct the search execution to record the current offset as
// the most recently seen match. It is the dead state that actually
// indicates when to stop the search (other than EOF or quit
// states).
//
// However, when 'allmatches' is true, the caller has asked us to
// leave in every possible match state. This tends not to make a
// whole lot of sense in unanchored searches, because it means the
// search really cannot terminate until EOF. And often, in that
// case, you wind up skipping over a bunch of matches and are left
// with the "last" match. Arguably, it just doesn't make a lot of
// sense to run a 'leftmost' search (which is what this routine is)
// with 'allmatches' set to true. But the DFAs support it and this
// matches their behavior. (Generally, 'allmatches' is useful for
// overlapping searches or leftmost anchored searches to find the
// longest possible match by ignoring match priority.)
if !pid.is_some() || allmatches {
// Since we are adding to the 'curr' active states and since
// this is for the start ID, we use a slots slice that is
// guaranteed to have the right length but where every element
// is absent. This is exactly what we want, because this
// epsilon closure is responsible for simulating an unanchored
// '(?s:.)*?' prefix. It is specifically outside of any
// capturing groups, and thus, using slots that are always
// absent is correct.
//
// Note though that we can't just use '&mut []' here, since
// this epsilon closure may traverse through 'Captures' epsilon
// transitions, and thus must be able to write offsets to the
// slots given which are later copied to slot values in 'curr'.
let slots = next.slot_table.all_absent();
self.epsilon_closure(stack, slots, curr, input, at, start_id);
}
if let Some(x) = self.nexts(stack, curr, next, input, at, slots) {
pid = Some(x);
}
// Unless the caller asked us to return early, we need to mush on
// to see if we can extend our match. (But note that 'nexts' will
// quit right after seeing a match when match_kind==LeftmostFirst,
// as is consistent with leftmost-first match priority.)
if input.get_earliest() && pid.is_some() {
break;
}
core::mem::swap(curr, next);
next.set.clear();
at += 1;
}
instrument!(|c| c.eprint(&self.nfa));
pid
}
/// The implementation for the 'which_overlapping_matches' API. Basically,
/// we do a single scan through the entire haystack (unless our regex
/// or search is anchored) and record every pattern that matched. In
/// particular, when MatchKind::All is used, this supports overlapping
/// matches. So if we have the regexes 'sam' and 'samwise', they will
/// *both* be reported in the pattern set when searching the haystack
/// 'samwise'.
fn which_overlapping_imp(
&self,
cache: &mut Cache,
input: &Input<'_>,
patset: &mut PatternSet,
) {
// NOTE: This is effectively a copy of 'search_imp' above, but with no
// captures support and instead writes patterns that matched directly
// to 'patset'. See that routine for better commentary about what's
// going on in this routine. We probably could unify the routines using
// generics or more helper routines, but I'm not sure it's worth it.
//
// NOTE: We somewhat go out of our way here to support things like
// 'input.get_earliest()' and 'leftmost-first' match semantics. Neither
// of those seem particularly relevant to this routine, but they are
// both supported by the DFA analogs of this routine by construction
// and composition, so it seems like good sense to have the PikeVM
// match that behavior.
cache.setup_search(0);
if input.is_done() {
return;
}
assert!(
input.haystack().len() < core::usize::MAX,
"byte slice lengths must be less than usize MAX",
);
instrument!(|c| c.reset(&self.nfa));
let allmatches =
self.config.get_match_kind().continue_past_first_match();
let (anchored, start_id) = match self.start_config(input) {
None => return,
Some(config) => config,
};
let Cache { ref mut stack, ref mut curr, ref mut next } = cache;
for at in input.start()..=input.end() {
let any_matches = !patset.is_empty();
if curr.set.is_empty() {
if any_matches && !allmatches {
break;
}
if anchored && at > input.start() {
break;
}
}
if !any_matches || allmatches {
let slots = &mut [];
self.epsilon_closure(stack, slots, curr, input, at, start_id);
}
self.nexts_overlapping(stack, curr, next, input, at, patset);
// If we found a match and filled our set, then there is no more
// additional info that we can provide. Thus, we can quit. We also
// quit if the caller asked us to stop at the earliest point that
// we know a match exists.
if patset.is_full() || input.get_earliest() {
break;
}
core::mem::swap(curr, next);
next.set.clear();
}
instrument!(|c| c.eprint(&self.nfa));
}
/// Process the active states in 'curr' to find the states (written to
/// 'next') we should process for the next byte in the haystack.
///
/// 'stack' is used to perform a depth first traversal of the NFA when
/// computing an epsilon closure.
///
/// When a match is found, the slots for that match state (in 'curr') are
/// copied to 'caps'. Moreover, once a match is seen, processing for 'curr'
/// stops (unless the PikeVM was configured with MatchKind::All semantics).
#[cfg_attr(feature = "perf-inline", inline(always))]
fn nexts(
&self,
stack: &mut Vec<FollowEpsilon>,
curr: &mut ActiveStates,
next: &mut ActiveStates,
input: &Input<'_>,
at: usize,
slots: &mut [Option<NonMaxUsize>],
) -> Option<PatternID> {
instrument!(|c| c.record_state_set(&curr.set));
let mut pid = None;
let ActiveStates { ref set, ref mut slot_table } = *curr;
for sid in set.iter() {
pid = match self.next(stack, slot_table, next, input, at, sid) {
None => continue,
Some(pid) => Some(pid),
};
slots.copy_from_slice(slot_table.for_state(sid));
if !self.config.get_match_kind().continue_past_first_match() {
break;
}
}
pid
}
/// Like 'nexts', but for the overlapping case. This doesn't write any
/// slots, and instead just writes which pattern matched in 'patset'.
#[cfg_attr(feature = "perf-inline", inline(always))]
fn nexts_overlapping(
&self,
stack: &mut Vec<FollowEpsilon>,
curr: &mut ActiveStates,
next: &mut ActiveStates,
input: &Input<'_>,
at: usize,
patset: &mut PatternSet,
) {
instrument!(|c| c.record_state_set(&curr.set));
let utf8empty = self.get_nfa().has_empty() && self.get_nfa().is_utf8();
let ActiveStates { ref set, ref mut slot_table } = *curr;
for sid in set.iter() {
let pid = match self.next(stack, slot_table, next, input, at, sid)
{
None => continue,
Some(pid) => pid,
};
// This handles the case of finding a zero-width match that splits
// a codepoint. Namely, if we're in UTF-8 mode AND we know we can
// match the empty string, then the only valid way of getting to
// this point with an offset that splits a codepoint is when we
// have an empty match. Such matches, in UTF-8 mode, must not be
// reported. So we just skip them here and pretend as if we did
// not see a match.
if utf8empty && !input.is_char_boundary(at) {
continue;
}
let _ = patset.try_insert(pid);
if !self.config.get_match_kind().continue_past_first_match() {
break;
}
}
}
/// Starting from 'sid', if the position 'at' in the 'input' haystack has a
/// transition defined out of 'sid', then add the state transitioned to and
/// its epsilon closure to the 'next' set of states to explore.
///
/// 'stack' is used by the epsilon closure computation to perform a depth
/// first traversal of the NFA.
///
/// 'curr_slot_table' should be the table of slots for the current set of
/// states being explored. If there is a transition out of 'sid', then
/// sid's row in the slot table is used to perform the epsilon closure.
#[cfg_attr(feature = "perf-inline", inline(always))]
fn next(
&self,
stack: &mut Vec<FollowEpsilon>,
curr_slot_table: &mut SlotTable,
next: &mut ActiveStates,
input: &Input<'_>,
at: usize,
sid: StateID,
) -> Option<PatternID> {
instrument!(|c| c.record_step(sid));
match *self.nfa.state(sid) {
State::Fail
| State::Look { .. }
| State::Union { .. }
| State::BinaryUnion { .. }
| State::Capture { .. } => None,
State::ByteRange { ref trans } => {
if trans.matches(input.haystack(), at) {
let slots = curr_slot_table.for_state(sid);
// OK because 'at <= haystack.len() < usize::MAX', so
// adding 1 will never wrap.
let at = at.wrapping_add(1);
self.epsilon_closure(
stack, slots, next, input, at, trans.next,
);
}
None
}
State::Sparse(ref sparse) => {
if let Some(next_sid) = sparse.matches(input.haystack(), at) {
let slots = curr_slot_table.for_state(sid);
// OK because 'at <= haystack.len() < usize::MAX', so
// adding 1 will never wrap.
let at = at.wrapping_add(1);
self.epsilon_closure(
stack, slots, next, input, at, next_sid,
);
}
None
}
State::Dense(ref dense) => {
if let Some(next_sid) = dense.matches(input.haystack(), at) {
let slots = curr_slot_table.for_state(sid);
// OK because 'at <= haystack.len() < usize::MAX', so
// adding 1 will never wrap.
let at = at.wrapping_add(1);
self.epsilon_closure(
stack, slots, next, input, at, next_sid,
);
}
None
}
State::Match { pattern_id } => Some(pattern_id),
}
}
/// Compute the epsilon closure of 'sid', writing the closure into 'next'
/// while copying slot values from 'curr_slots' into corresponding states
/// in 'next'. 'curr_slots' should be the slot values corresponding to
/// 'sid'.
///
/// The given 'stack' is used to perform a depth first traversal of the
/// NFA by recursively following all epsilon transitions out of 'sid'.
/// Conditional epsilon transitions are followed if and only if they are
/// satisfied for the position 'at' in the 'input' haystack.
///
/// While this routine may write to 'curr_slots', once it returns, any
/// writes are undone and the original values (even if absent) are
/// restored.
#[cfg_attr(feature = "perf-inline", inline(always))]
fn epsilon_closure(
&self,
stack: &mut Vec<FollowEpsilon>,
curr_slots: &mut [Option<NonMaxUsize>],
next: &mut ActiveStates,
input: &Input<'_>,
at: usize,
sid: StateID,
) {
instrument!(|c| {
c.record_closure(sid);
c.record_stack_push(sid);
});
stack.push(FollowEpsilon::Explore(sid));
while let Some(frame) = stack.pop() {
match frame {
FollowEpsilon::RestoreCapture { slot, offset: pos } => {
curr_slots[slot] = pos;
}
FollowEpsilon::Explore(sid) => {
self.epsilon_closure_explore(
stack, curr_slots, next, input, at, sid,
);
}
}
}
}
/// Explore all of the epsilon transitions out of 'sid'. This is mostly
/// split out from 'epsilon_closure' in order to clearly delineate
/// the actual work of computing an epsilon closure from the stack
/// book-keeping.
///
/// This will push any additional explorations needed on to 'stack'.
///
/// 'curr_slots' should refer to the slots for the currently active NFA
/// state. That is, the current state we are stepping through. These
/// slots are mutated in place as new 'Captures' states are traversed
/// during epsilon closure, but the slots are restored to their original
/// values once the full epsilon closure is completed. The ultimate use of
/// 'curr_slots' is to copy them to the corresponding 'next_slots', so that
/// the capturing group spans are forwarded from the currently active state
/// to the next.
///
/// 'next' refers to the next set of active states. Computing an epsilon
/// closure may increase the next set of active states.
///
/// 'input' refers to the caller's input configuration and 'at' refers to
/// the current position in the haystack. These are used to check whether
/// conditional epsilon transitions (like look-around) are satisfied at
/// the current position. If they aren't, then the epsilon closure won't
/// include them.
#[cfg_attr(feature = "perf-inline", inline(always))]
fn epsilon_closure_explore(
&self,
stack: &mut Vec<FollowEpsilon>,
curr_slots: &mut [Option<NonMaxUsize>],
next: &mut ActiveStates,
input: &Input<'_>,
at: usize,
mut sid: StateID,
) {
// We can avoid pushing some state IDs on to our stack in precisely
// the cases where a 'push(x)' would be immediately followed by a 'x
// = pop()'. This is achieved by this outer-loop. We simply set 'sid'
// to be the next state ID we want to explore once we're done with
// our initial exploration. In practice, this avoids a lot of stack
// thrashing.
loop {
instrument!(|c| c.record_set_insert(sid));
// Record this state as part of our next set of active states. If
// we've already explored it, then no need to do it again.
if !next.set.insert(sid) {
return;
}
match *self.nfa.state(sid) {
State::Fail
| State::Match { .. }
| State::ByteRange { .. }
| State::Sparse { .. }
| State::Dense { .. } => {
next.slot_table.for_state(sid).copy_from_slice(curr_slots);
return;
}
State::Look { look, next } => {
// OK because we don't permit building a searcher with a
// Unicode word boundary if the requisite Unicode data is
// unavailable.
if !self.nfa.look_matcher().matches_inline(
look,
input.haystack(),
at,
) {
return;
}
sid = next;
}
State::Union { ref alternates } => {
sid = match alternates.get(0) {
None => return,
Some(&sid) => sid,
};
instrument!(|c| {
for &alt in &alternates[1..] {
c.record_stack_push(alt);
}
});
stack.extend(
alternates[1..]
.iter()
.copied()
.rev()
.map(FollowEpsilon::Explore),
);
}
State::BinaryUnion { alt1, alt2 } => {
sid = alt1;
instrument!(|c| c.record_stack_push(sid));
stack.push(FollowEpsilon::Explore(alt2));
}
State::Capture { next, slot, .. } => {
// There's no need to do anything with slots that
// ultimately won't be copied into the caller-provided
// 'Captures' value. So we just skip dealing with them at
// all.
if slot.as_usize() < curr_slots.len() {
instrument!(|c| c.record_stack_push(sid));
stack.push(FollowEpsilon::RestoreCapture {
slot,
offset: curr_slots[slot],
});
// OK because length of a slice must fit into an isize.
curr_slots[slot] = Some(NonMaxUsize::new(at).unwrap());
}
sid = next;
}
}
}
}
/// Return the starting configuration of a PikeVM search.
///
/// The "start config" is basically whether the search should be anchored
/// or not and the NFA state ID at which to begin the search. The state ID
/// returned always corresponds to an anchored starting state even when the
/// search is unanchored. This is because the PikeVM search loop deals with
/// unanchored searches with an explicit epsilon closure out of the start
/// state.
///
/// This routine accounts for both the caller's `Input` configuration
/// and the pattern itself. For example, even if the caller asks for an
/// unanchored search, if the pattern itself is anchored, then this will
/// always return 'true' because implementing an unanchored search in that
/// case would be incorrect.
///
/// Similarly, if the caller requests an anchored search for a particular
/// pattern, then the starting state ID returned will reflect that.
///
/// If a pattern ID is given in the input configuration that is not in
/// this regex, then `None` is returned.
fn start_config(&self, input: &Input<'_>) -> Option<(bool, StateID)> {
match input.get_anchored() {
// Only way we're unanchored is if both the caller asked for an
// unanchored search *and* the pattern is itself not anchored.
Anchored::No => Some((
self.nfa.is_always_start_anchored(),
self.nfa.start_anchored(),
)),
Anchored::Yes => Some((true, self.nfa.start_anchored())),
Anchored::Pattern(pid) => {
Some((true, self.nfa.start_pattern(pid)?))
}
}
}
}
/// An iterator over all non-overlapping matches for a particular search.
///
/// The iterator yields a [`Match`] value until no more matches could be found.
///
/// The lifetime parameters are as follows:
///
/// * `'r` represents the lifetime of the PikeVM.
/// * `'c` represents the lifetime of the PikeVM's cache.
/// * `'h` represents the lifetime of the haystack being searched.
///
/// This iterator can be created with the [`PikeVM::find_iter`] method.
#[derive(Debug)]
pub struct FindMatches<'r, 'c, 'h> {
re: &'r PikeVM,
cache: &'c mut Cache,
caps: Captures,
it: iter::Searcher<'h>,
}
impl<'r, 'c, 'h> Iterator for FindMatches<'r, 'c, 'h> {
type Item = Match;
#[inline]
fn next(&mut self) -> Option<Match> {
// Splitting 'self' apart seems necessary to appease borrowck.
let FindMatches { re, ref mut cache, ref mut caps, ref mut it } =
*self;
// 'advance' converts errors into panics, which is OK here because
// the PikeVM can never return an error.
it.advance(|input| {
re.search(cache, input, caps);
Ok(caps.get_match())
})
}
}
/// An iterator over all non-overlapping leftmost matches, with their capturing
/// groups, for a particular search.
///
/// The iterator yields a [`Captures`] value until no more matches could be
/// found.
///
/// The lifetime parameters are as follows:
///
/// * `'r` represents the lifetime of the PikeVM.
/// * `'c` represents the lifetime of the PikeVM's cache.
/// * `'h` represents the lifetime of the haystack being searched.
///
/// This iterator can be created with the [`PikeVM::captures_iter`] method.
#[derive(Debug)]
pub struct CapturesMatches<'r, 'c, 'h> {
re: &'r PikeVM,
cache: &'c mut Cache,
caps: Captures,
it: iter::Searcher<'h>,
}
impl<'r, 'c, 'h> Iterator for CapturesMatches<'r, 'c, 'h> {
type Item = Captures;
#[inline]
fn next(&mut self) -> Option<Captures> {
// Splitting 'self' apart seems necessary to appease borrowck.
let CapturesMatches { re, ref mut cache, ref mut caps, ref mut it } =
*self;
// 'advance' converts errors into panics, which is OK here because
// the PikeVM can never return an error.
it.advance(|input| {
re.search(cache, input, caps);
Ok(caps.get_match())
});
if caps.is_match() {
Some(caps.clone())
} else {
None
}
}
}
/// A cache represents mutable state that a [`PikeVM`] requires during a
/// search.
///
/// For a given [`PikeVM`], its corresponding cache may be created either via
/// [`PikeVM::create_cache`], or via [`Cache::new`]. They are equivalent in
/// every way, except the former does not require explicitly importing `Cache`.
///
/// A particular `Cache` is coupled with the [`PikeVM`] from which it
/// was created. It may only be used with that `PikeVM`. A cache and its
/// allocations may be re-purposed via [`Cache::reset`], in which case, it can
/// only be used with the new `PikeVM` (and not the old one).
#[derive(Clone, Debug)]
pub struct Cache {
/// Stack used while computing epsilon closure. This effectively lets us
/// move what is more naturally expressed through recursion to a stack
/// on the heap.
stack: Vec<FollowEpsilon>,
/// The current active states being explored for the current byte in the
/// haystack.
curr: ActiveStates,
/// The next set of states we're building that will be explored for the
/// next byte in the haystack.
next: ActiveStates,
}
impl Cache {
/// Create a new [`PikeVM`] cache.
///
/// A potentially more convenient routine to create a cache is
/// [`PikeVM::create_cache`], as it does not require also importing the
/// `Cache` type.
///
/// If you want to reuse the returned `Cache` with some other `PikeVM`,
/// then you must call [`Cache::reset`] with the desired `PikeVM`.
pub fn new(re: &PikeVM) -> Cache {
Cache {
stack: vec![],
curr: ActiveStates::new(re),
next: ActiveStates::new(re),
}
}
/// Reset this cache such that it can be used for searching with a
/// different [`PikeVM`].
///
/// A cache reset permits reusing memory already allocated in this cache
/// with a different `PikeVM`.
///
/// # Example
///
/// This shows how to re-purpose a cache for use with a different `PikeVM`.
///
/// ```
/// # if cfg!(miri) { return Ok(()); } // miri takes too long
/// use regex_automata::{nfa::thompson::pikevm::PikeVM, Match};
///
/// let re1 = PikeVM::new(r"\w")?;
/// let re2 = PikeVM::new(r"\W")?;
///
/// let mut cache = re1.create_cache();
/// assert_eq!(
/// Some(Match::must(0, 0..2)),
/// re1.find_iter(&mut cache, "Δ").next(),
/// );
///
/// // Using 'cache' with re2 is not allowed. It may result in panics or
/// // incorrect results. In order to re-purpose the cache, we must reset
/// // it with the PikeVM we'd like to use it with.
/// //
/// // Similarly, after this reset, using the cache with 're1' is also not
/// // allowed.
/// cache.reset(&re2);
/// assert_eq!(
/// Some(Match::must(0, 0..3)),
/// re2.find_iter(&mut cache, "☃").next(),
/// );
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
pub fn reset(&mut self, re: &PikeVM) {
self.curr.reset(re);
self.next.reset(re);
}
/// Returns the heap memory usage, in bytes, of this cache.
///
/// This does **not** include the stack size used up by this cache. To
/// compute that, use `std::mem::size_of::<Cache>()`.
pub fn memory_usage(&self) -> usize {
use core::mem::size_of;
(self.stack.len() * size_of::<FollowEpsilon>())
+ self.curr.memory_usage()
+ self.next.memory_usage()
}
/// Clears this cache. This should be called at the start of every search
/// to ensure we start with a clean slate.
///
/// This also sets the length of the capturing groups used in the current
/// search. This permits an optimization where by 'SlotTable::for_state'
/// only returns the number of slots equivalent to the number of slots
/// given in the 'Captures' value. This may be less than the total number
/// of possible slots, e.g., when one only wants to track overall match
/// offsets. This in turn permits less copying of capturing group spans
/// in the PikeVM.
fn setup_search(&mut self, captures_slot_len: usize) {
self.stack.clear();
self.curr.setup_search(captures_slot_len);
self.next.setup_search(captures_slot_len);
}
}
/// A set of active states used to "simulate" the execution of an NFA via the
/// PikeVM.
///
/// There are two sets of these used during NFA simulation. One set corresponds
/// to the "current" set of states being traversed for the current position
/// in a haystack. The other set corresponds to the "next" set of states being
/// built, which will become the new "current" set for the next position in the
/// haystack. These two sets correspond to CLIST and NLIST in Thompson's
/// original paper regexes: https://dl.acm.org/doi/pdf/10.1145/363347.363387
///
/// In addition to representing a set of NFA states, this also maintains slot
/// values for each state. These slot values are what turn the NFA simulation
/// into the "Pike VM." Namely, they track capturing group values for each
/// state. During the computation of epsilon closure, we copy slot values from
/// states in the "current" set to the "next" set. Eventually, once a match
/// is found, the slot values for that match state are what we write to the
/// caller provided 'Captures' value.
#[derive(Clone, Debug)]
struct ActiveStates {
/// The set of active NFA states. This set preserves insertion order, which
/// is critical for simulating the match semantics of backtracking regex
/// engines.
set: SparseSet,
/// The slots for every NFA state, where each slot stores a (possibly
/// absent) offset. Every capturing group has two slots. One for a start
/// offset and one for an end offset.
slot_table: SlotTable,
}
impl ActiveStates {
/// Create a new set of active states for the given PikeVM. The active
/// states returned may only be used with the given PikeVM. (Use 'reset'
/// to re-purpose the allocation for a different PikeVM.)
fn new(re: &PikeVM) -> ActiveStates {
let mut active = ActiveStates {
set: SparseSet::new(0),
slot_table: SlotTable::new(),
};
active.reset(re);
active
}
/// Reset this set of active states such that it can be used with the given
/// PikeVM (and only that PikeVM).
fn reset(&mut self, re: &PikeVM) {
self.set.resize(re.get_nfa().states().len());
self.slot_table.reset(re);
}
/// Return the heap memory usage, in bytes, used by this set of active
/// states.
///
/// This does not include the stack size of this value.
fn memory_usage(&self) -> usize {
self.set.memory_usage() + self.slot_table.memory_usage()
}
/// Setup this set of active states for a new search. The given slot
/// length should be the number of slots in a caller provided 'Captures'
/// (and may be zero).
fn setup_search(&mut self, captures_slot_len: usize) {
self.set.clear();
self.slot_table.setup_search(captures_slot_len);
}
}
/// A table of slots, where each row represent a state in an NFA. Thus, the
/// table has room for storing slots for every single state in an NFA.
///
/// This table is represented with a single contiguous allocation. In general,
/// the notion of "capturing group" doesn't really exist at this level of
/// abstraction, hence the name "slot" instead. (Indeed, every capturing group
/// maps to a pair of slots, one for the start offset and one for the end
/// offset.) Slots are indexed by the 'Captures' NFA state.
///
/// N.B. Not every state actually needs a row of slots. Namely, states that
/// only have epsilon transitions currently never have anything written to
/// their rows in this table. Thus, the table is somewhat wasteful in its heap
/// usage. However, it is important to maintain fast random access by state
/// ID, which means one giant table tends to work well. RE2 takes a different
/// approach here and allocates each row as its own reference counted thing.
/// I explored such a strategy at one point here, but couldn't get it to work
/// well using entirely safe code. (To the ambitious reader: I encourage you to
/// re-litigate that experiment.) I very much wanted to stick to safe code, but
/// could be convinced otherwise if there was a solid argument and the safety
/// was encapsulated well.
#[derive(Clone, Debug)]
struct SlotTable {
/// The actual table of offsets.
table: Vec<Option<NonMaxUsize>>,
/// The number of slots per state, i.e., the table's stride or the length
/// of each row.
slots_per_state: usize,
/// The number of slots in the caller-provided 'Captures' value for the
/// current search. Setting this to 'slots_per_state' is always correct,
/// but may be wasteful.
slots_for_captures: usize,
}
impl SlotTable {
/// Create a new slot table.
///
/// One should call 'reset' with the corresponding PikeVM before use.
fn new() -> SlotTable {
SlotTable { table: vec![], slots_for_captures: 0, slots_per_state: 0 }
}
/// Reset this slot table such that it can be used with the given PikeVM
/// (and only that PikeVM).
fn reset(&mut self, re: &PikeVM) {
let nfa = re.get_nfa();
self.slots_per_state = nfa.group_info().slot_len();
// This is always correct, but may be reduced for a particular search
// if a 'Captures' has fewer slots, e.g., none at all or only slots
// for tracking the overall match instead of all slots for every
// group.
self.slots_for_captures = nfa.group_info().slot_len();
let len = nfa
.states()
.len()
// We add 1 so that our last row is always empty. We use it as
// "scratch" space for computing the epsilon closure off of the
// starting state.
.checked_add(1)
.and_then(|x| x.checked_mul(self.slots_per_state))
// It seems like this could actually panic on legitimate inputs on
// 32-bit targets, and very likely to panic on 16-bit. Should we
// somehow convert this to an error? What about something similar
// for the lazy DFA cache? If you're tripping this assert, please
// file a bug.
.expect("slot table length doesn't overflow");
// This happens about as often as a regex is compiled, so it probably
// should be at debug level, but I found it quite distracting and not
// particularly useful.
trace!(
"resizing PikeVM active states table to {} entries \
(slots_per_state={})",
len,
self.slots_per_state,
);
self.table.resize(len, None);
}
/// Return the heap memory usage, in bytes, used by this slot table.
///
/// This does not include the stack size of this value.
fn memory_usage(&self) -> usize {
self.table.len() * core::mem::size_of::<Option<NonMaxUsize>>()
}
/// Perform any per-search setup for this slot table.
///
/// In particular, this sets the length of the number of slots used in the
/// 'Captures' given by the caller (if any at all). This number may be
/// smaller than the total number of slots available, e.g., when the caller
/// is only interested in tracking the overall match and not the spans of
/// every matching capturing group. Only tracking the overall match can
/// save a substantial amount of time copying capturing spans during a
/// search.
fn setup_search(&mut self, captures_slot_len: usize) {
self.slots_for_captures = captures_slot_len;
}
/// Return a mutable slice of the slots for the given state.
///
/// Note that the length of the slice returned may be less than the total
/// number of slots available for this state. In particular, the length
/// always matches the number of slots indicated via 'setup_search'.
fn for_state(&mut self, sid: StateID) -> &mut [Option<NonMaxUsize>] {
let i = sid.as_usize() * self.slots_per_state;
&mut self.table[i..i + self.slots_for_captures]
}
/// Return a slice of slots of appropriate length where every slot offset
/// is guaranteed to be absent. This is useful in cases where you need to
/// compute an epsilon closure outside of the user supplied regex, and thus
/// never want it to have any capturing slots set.
fn all_absent(&mut self) -> &mut [Option<NonMaxUsize>] {
let i = self.table.len() - self.slots_per_state;
&mut self.table[i..i + self.slots_for_captures]
}
}
/// Represents a stack frame for use while computing an epsilon closure.
///
/// (An "epsilon closure" refers to the set of reachable NFA states from a
/// single state without consuming any input. That is, the set of all epsilon
/// transitions not only from that single state, but from every other state
/// reachable by an epsilon transition as well. This is why it's called a
/// "closure." Computing an epsilon closure is also done during DFA
/// determinization! Compare and contrast the epsilon closure here in this
/// PikeVM and the one used for determinization in crate::util::determinize.)
///
/// Computing the epsilon closure in a Thompson NFA proceeds via a depth
/// first traversal over all epsilon transitions from a particular state.
/// (A depth first traversal is important because it emulates the same priority
/// of matches that is typically found in backtracking regex engines.) This
/// depth first traversal is naturally expressed using recursion, but to avoid
/// a call stack size proportional to the size of a regex, we put our stack on
/// the heap instead.
///
/// This stack thus consists of call frames. The typical call frame is
/// `Explore`, which instructs epsilon closure to explore the epsilon
/// transitions from that state. (Subsequent epsilon transitions are then
/// pushed on to the stack as more `Explore` frames.) If the state ID being
/// explored has no epsilon transitions, then the capturing group slots are
/// copied from the original state that sparked the epsilon closure (from the
/// 'step' routine) to the state ID being explored. This way, capturing group
/// slots are forwarded from the previous state to the next.
///
/// The other stack frame, `RestoreCaptures`, instructs the epsilon closure to
/// set the position for a particular slot back to some particular offset. This
/// frame is pushed when `Explore` sees a `Capture` transition. `Explore` will
/// set the offset of the slot indicated in `Capture` to the current offset,
/// and then push the old offset on to the stack as a `RestoreCapture` frame.
/// Thus, the new offset is only used until the epsilon closure reverts back to
/// the `RestoreCapture` frame. In effect, this gives the `Capture` epsilon
/// transition its "scope" to only states that come "after" it during depth
/// first traversal.
#[derive(Clone, Debug)]
enum FollowEpsilon {
/// Explore the epsilon transitions from a state ID.
Explore(StateID),
/// Reset the given `slot` to the given `offset` (which might be `None`).
RestoreCapture { slot: SmallIndex, offset: Option<NonMaxUsize> },
}
/// A set of counters that "instruments" a PikeVM search. To enable this, you
/// must enable the 'internal-instrument-pikevm' feature. Then run your Rust
/// program with RUST_LOG=regex_automata::nfa::thompson::pikevm=trace set in
/// the environment. The metrics collected will be dumped automatically for
/// every search executed by the PikeVM.
///
/// NOTE: When 'internal-instrument-pikevm' is enabled, it will likely cause an
/// absolute decrease in wall-clock performance, even if the 'trace' log level
/// isn't enabled. (Although, we do try to avoid extra costs when 'trace' isn't
/// enabled.) The main point of instrumentation is to get counts of various
/// events that occur during the PikeVM's execution.
///
/// This is a somewhat hacked together collection of metrics that are useful
/// to gather from a PikeVM search. In particular, it lets us scrutinize the
/// performance profile of a search beyond what general purpose profiling tools
/// give us. Namely, we orient the profiling data around the specific states of
/// the NFA.
///
/// In other words, this lets us see which parts of the NFA graph are most
/// frequently activated. This then provides direction for optimization
/// opportunities.
///
/// The really sad part about this is that it absolutely clutters up the PikeVM
/// implementation. :'( Another approach would be to just manually add this
/// code in whenever I want this kind of profiling data, but it's complicated
/// and tedious enough that I went with this approach... for now.
///
/// When instrumentation is enabled (which also turns on 'logging'), then a
/// `Counters` is initialized for every search and `trace`'d just before the
/// search returns to the caller.
///
/// Tip: When debugging performance problems with the PikeVM, it's best to try
/// to work with an NFA that is as small as possible. Otherwise the state graph
/// is likely to be too big to digest.
#[cfg(feature = "internal-instrument-pikevm")]
#[derive(Clone, Debug)]
struct Counters {
/// The number of times the NFA is in a particular permutation of states.
state_sets: alloc::collections::BTreeMap<Vec<StateID>, u64>,
/// The number of times 'step' is called for a particular state ID (which
/// indexes this array).
steps: Vec<u64>,
/// The number of times an epsilon closure was computed for a state.
closures: Vec<u64>,
/// The number of times a particular state ID is pushed on to a stack while
/// computing an epsilon closure.
stack_pushes: Vec<u64>,
/// The number of times a particular state ID is inserted into a sparse set
/// while computing an epsilon closure.
set_inserts: Vec<u64>,
}
#[cfg(feature = "internal-instrument-pikevm")]
impl Counters {
fn empty() -> Counters {
Counters {
state_sets: alloc::collections::BTreeMap::new(),
steps: vec![],
closures: vec![],
stack_pushes: vec![],
set_inserts: vec![],
}
}
fn reset(&mut self, nfa: &NFA) {
let len = nfa.states().len();
self.state_sets.clear();
self.steps.clear();
self.steps.resize(len, 0);
self.closures.clear();
self.closures.resize(len, 0);
self.stack_pushes.clear();
self.stack_pushes.resize(len, 0);
self.set_inserts.clear();
self.set_inserts.resize(len, 0);
}
fn eprint(&self, nfa: &NFA) {
trace!("===== START PikeVM Instrumentation Output =====");
// We take the top-K most occurring state sets. Otherwise the output
// is likely to be overwhelming. And we probably only care about the
// most frequently occurring ones anyway.
const LIMIT: usize = 20;
let mut set_counts =
self.state_sets.iter().collect::<Vec<(&Vec<StateID>, &u64)>>();
set_counts.sort_by_key(|(_, &count)| core::cmp::Reverse(count));
trace!("## PikeVM frequency of state sets (top {})", LIMIT);
for (set, count) in set_counts.iter().take(LIMIT) {
trace!("{:?}: {}", set, count);
}
if set_counts.len() > LIMIT {
trace!(
"... {} sets omitted (out of {} total)",
set_counts.len() - LIMIT,
set_counts.len(),
);
}
trace!("");
trace!("## PikeVM total frequency of events");
trace!(
"steps: {}, closures: {}, stack-pushes: {}, set-inserts: {}",
self.steps.iter().copied().sum::<u64>(),
self.closures.iter().copied().sum::<u64>(),
self.stack_pushes.iter().copied().sum::<u64>(),
self.set_inserts.iter().copied().sum::<u64>(),
);
trace!("");
trace!("## PikeVM frequency of events broken down by state");
for sid in 0..self.steps.len() {
trace!(
"{:06}: steps: {}, closures: {}, \
stack-pushes: {}, set-inserts: {}",
sid,
self.steps[sid],
self.closures[sid],
self.stack_pushes[sid],
self.set_inserts[sid],
);
}
trace!("");
trace!("## NFA debug display");
trace!("{:?}", nfa);
trace!("===== END PikeVM Instrumentation Output =====");
}
fn record_state_set(&mut self, set: &SparseSet) {
let set = set.iter().collect::<Vec<StateID>>();
*self.state_sets.entry(set).or_insert(0) += 1;
}
fn record_step(&mut self, sid: StateID) {
self.steps[sid] += 1;
}
fn record_closure(&mut self, sid: StateID) {
self.closures[sid] += 1;
}
fn record_stack_push(&mut self, sid: StateID) {
self.stack_pushes[sid] += 1;
}
fn record_set_insert(&mut self, sid: StateID) {
self.set_inserts[sid] += 1;
}
}