1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
/*!
Provides types for dealing with capturing groups.

Capturing groups refer to sub-patterns of regexes that some regex engines can
report matching offsets for. For example, matching `[a-z]([0-9]+)` against
`a789` would give `a789` as the overall match (for the implicit capturing group
at index `0`) and `789` as the match for the capturing group `([0-9]+)` (an
explicit capturing group at index `1`).

Not all regex engines can report match offsets for capturing groups. Indeed,
to a first approximation, regex engines that can report capturing group offsets
tend to be quite a bit slower than regex engines that can't. This is because
tracking capturing groups at search time usually requires more "power" that
in turn adds overhead.

Other regex implementations might call capturing groups "submatches."

# Overview

The main types in this module are:

* [`Captures`] records the capturing group offsets found during a search. It
provides convenience routines for looking up capturing group offsets by either
index or name.
* [`GroupInfo`] records the mapping between capturing groups and "slots,"
where the latter are how capturing groups are recorded during a regex search.
This also keeps a mapping from capturing group name to index, and capture
group index to name. A `GroupInfo` is used by `Captures` internally to
provide a convenient API. It is unlikely that you'll use a `GroupInfo`
directly, but for example, if you've compiled an Thompson NFA, then you can use
[`thompson::NFA::group_info`](crate::nfa::thompson::NFA::group_info) to get its
underlying `GroupInfo`.
*/

use alloc::{string::String, sync::Arc, vec, vec::Vec};

use crate::util::{
    interpolate,
    primitives::{
        NonMaxUsize, PatternID, PatternIDError, PatternIDIter, SmallIndex,
    },
    search::{Match, Span},
};

/// The span offsets of capturing groups after a match has been found.
///
/// This type represents the output of regex engines that can report the
/// offsets at which capturing groups matches or "submatches" occur. For
/// example, the [`PikeVM`](crate::nfa::thompson::pikevm::PikeVM). When a match
/// occurs, it will at minimum contain the [`PatternID`] of the pattern that
/// matched. Depending upon how it was constructed, it may also contain the
/// start/end offsets of the entire match of the pattern and the start/end
/// offsets of each capturing group that participated in the match.
///
/// Values of this type are always created for a specific [`GroupInfo`]. It is
/// unspecified behavior to use a `Captures` value in a search with any regex
/// engine that has a different `GroupInfo` than the one the `Captures` were
/// created with.
///
/// # Constructors
///
/// There are three constructors for this type that control what kind of
/// information is available upon a match:
///
/// * [`Captures::all`]: Will store overall pattern match offsets in addition
/// to the offsets of capturing groups that participated in the match.
/// * [`Captures::matches`]: Will store only the overall pattern
/// match offsets. The offsets of capturing groups (even ones that participated
/// in the match) are not available.
/// * [`Captures::empty`]: Will only store the pattern ID that matched. No
/// match offsets are available at all.
///
/// If you aren't sure which to choose, then pick the first one. The first one
/// is what convenience routines like,
/// [`PikeVM::create_captures`](crate::nfa::thompson::pikevm::PikeVM::create_captures),
/// will use automatically.
///
/// The main difference between these choices is performance. Namely, if you
/// ask for _less_ information, then the execution of regex search may be able
/// to run more quickly.
///
/// # Notes
///
/// It is worth pointing out that this type is not coupled to any one specific
/// regex engine. Instead, its coupling is with [`GroupInfo`], which is the
/// thing that is responsible for mapping capturing groups to "slot" offsets.
/// Slot offsets are indices into a single sequence of memory at which matching
/// haystack offsets for the corresponding group are written by regex engines.
///
/// # Example
///
/// This example shows how to parse a simple date and extract the components of
/// the date via capturing groups:
///
/// ```
/// use regex_automata::{nfa::thompson::pikevm::PikeVM, Span};
///
/// let re = PikeVM::new(r"^([0-9]{4})-([0-9]{2})-([0-9]{2})$")?;
/// let (mut cache, mut caps) = (re.create_cache(), re.create_captures());
///
/// re.captures(&mut cache, "2010-03-14", &mut caps);
/// assert!(caps.is_match());
/// assert_eq!(Some(Span::from(0..4)), caps.get_group(1));
/// assert_eq!(Some(Span::from(5..7)), caps.get_group(2));
/// assert_eq!(Some(Span::from(8..10)), caps.get_group(3));
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// # Example: named capturing groups
///
/// This example is like the one above, but leverages the ability to name
/// capturing groups in order to make the code a bit clearer:
///
/// ```
/// use regex_automata::{nfa::thompson::pikevm::PikeVM, Span};
///
/// let re = PikeVM::new(r"^(?P<y>[0-9]{4})-(?P<m>[0-9]{2})-(?P<d>[0-9]{2})$")?;
/// let (mut cache, mut caps) = (re.create_cache(), re.create_captures());
///
/// re.captures(&mut cache, "2010-03-14", &mut caps);
/// assert!(caps.is_match());
/// assert_eq!(Some(Span::from(0..4)), caps.get_group_by_name("y"));
/// assert_eq!(Some(Span::from(5..7)), caps.get_group_by_name("m"));
/// assert_eq!(Some(Span::from(8..10)), caps.get_group_by_name("d"));
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[derive(Clone)]
pub struct Captures {
    /// The group info that these capture groups are coupled to. This is what
    /// gives the "convenience" of the `Captures` API. Namely, it provides the
    /// slot mapping and the name|-->index mapping for capture lookups by name.
    group_info: GroupInfo,
    /// The ID of the pattern that matched. Regex engines must set this to
    /// None when no match occurs.
    pid: Option<PatternID>,
    /// The slot values, i.e., submatch offsets.
    ///
    /// In theory, the smallest sequence of slots would be something like
    /// `max(groups(pattern) for pattern in regex) * 2`, but instead, we use
    /// `sum(groups(pattern) for pattern in regex) * 2`. Why?
    ///
    /// Well, the former could be used in theory, because we don't generally
    /// have any overlapping APIs that involve capturing groups. Therefore,
    /// there's technically never any need to have slots set for multiple
    /// patterns. However, this might change some day, in which case, we would
    /// need to have slots available.
    ///
    /// The other reason is that during the execution of some regex engines,
    /// there exists a point in time where multiple slots for different
    /// patterns may be written to before knowing which pattern has matched.
    /// Therefore, the regex engines themselves, in order to support multiple
    /// patterns correctly, must have all slots available. If `Captures`
    /// doesn't have all slots available, then regex engines can't write
    /// directly into the caller provided `Captures` and must instead write
    /// into some other storage and then copy the slots involved in the match
    /// at the end of the search.
    ///
    /// So overall, at least as of the time of writing, it seems like the path
    /// of least resistance is to just require allocating all possible slots
    /// instead of the conceptual minimum. Another way to justify this is that
    /// the most common case is a single pattern, in which case, there is no
    /// inefficiency here since the 'max' and 'sum' calculations above are
    /// equivalent in that case.
    ///
    /// N.B. The mapping from group index to slot is maintained by `GroupInfo`
    /// and is considered an API guarantee. See `GroupInfo` for more details on
    /// that mapping.
    ///
    /// N.B. `Option<NonMaxUsize>` has the same size as a `usize`.
    slots: Vec<Option<NonMaxUsize>>,
}

impl Captures {
    /// Create new storage for the offsets of all matching capturing groups.
    ///
    /// This routine provides the most information for matches---namely, the
    /// spans of matching capturing groups---but also requires the regex search
    /// routines to do the most work.
    ///
    /// It is unspecified behavior to use the returned `Captures` value in a
    /// search with a `GroupInfo` other than the one that is provided to this
    /// constructor.
    ///
    /// # Example
    ///
    /// This example shows that all capturing groups---but only ones that
    /// participated in a match---are available to query after a match has
    /// been found:
    ///
    /// ```
    /// use regex_automata::{
    ///     nfa::thompson::pikevm::PikeVM,
    ///     util::captures::Captures,
    ///     Span, Match,
    /// };
    ///
    /// let re = PikeVM::new(
    ///     r"^(?:(?P<lower>[a-z]+)|(?P<upper>[A-Z]+))(?P<digits>[0-9]+)$",
    /// )?;
    /// let mut cache = re.create_cache();
    /// let mut caps = Captures::all(re.get_nfa().group_info().clone());
    ///
    /// re.captures(&mut cache, "ABC123", &mut caps);
    /// assert!(caps.is_match());
    /// assert_eq!(Some(Match::must(0, 0..6)), caps.get_match());
    /// // The 'lower' group didn't match, so it won't have any offsets.
    /// assert_eq!(None, caps.get_group_by_name("lower"));
    /// assert_eq!(Some(Span::from(0..3)), caps.get_group_by_name("upper"));
    /// assert_eq!(Some(Span::from(3..6)), caps.get_group_by_name("digits"));
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    pub fn all(group_info: GroupInfo) -> Captures {
        let slots = group_info.slot_len();
        Captures { group_info, pid: None, slots: vec![None; slots] }
    }

    /// Create new storage for only the full match spans of a pattern. This
    /// does not include any capturing group offsets.
    ///
    /// It is unspecified behavior to use the returned `Captures` value in a
    /// search with a `GroupInfo` other than the one that is provided to this
    /// constructor.
    ///
    /// # Example
    ///
    /// This example shows that only overall match offsets are reported when
    /// this constructor is used. Accessing any capturing groups other than
    /// the 0th will always return `None`.
    ///
    /// ```
    /// use regex_automata::{
    ///     nfa::thompson::pikevm::PikeVM,
    ///     util::captures::Captures,
    ///     Match,
    /// };
    ///
    /// let re = PikeVM::new(
    ///     r"^(?:(?P<lower>[a-z]+)|(?P<upper>[A-Z]+))(?P<digits>[0-9]+)$",
    /// )?;
    /// let mut cache = re.create_cache();
    /// let mut caps = Captures::matches(re.get_nfa().group_info().clone());
    ///
    /// re.captures(&mut cache, "ABC123", &mut caps);
    /// assert!(caps.is_match());
    /// assert_eq!(Some(Match::must(0, 0..6)), caps.get_match());
    /// // We didn't ask for capturing group offsets, so they aren't available.
    /// assert_eq!(None, caps.get_group_by_name("lower"));
    /// assert_eq!(None, caps.get_group_by_name("upper"));
    /// assert_eq!(None, caps.get_group_by_name("digits"));
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    pub fn matches(group_info: GroupInfo) -> Captures {
        // This is OK because we know there are at least this many slots,
        // and GroupInfo construction guarantees that the number of slots fits
        // into a usize.
        let slots = group_info.pattern_len().checked_mul(2).unwrap();
        Captures { group_info, pid: None, slots: vec![None; slots] }
    }

    /// Create new storage for only tracking which pattern matched. No offsets
    /// are stored at all.
    ///
    /// It is unspecified behavior to use the returned `Captures` value in a
    /// search with a `GroupInfo` other than the one that is provided to this
    /// constructor.
    ///
    /// # Example
    ///
    /// This example shows that only the pattern that matched can be accessed
    /// from a `Captures` value created via this constructor.
    ///
    /// ```
    /// use regex_automata::{
    ///     nfa::thompson::pikevm::PikeVM,
    ///     util::captures::Captures,
    ///     PatternID,
    /// };
    ///
    /// let re = PikeVM::new_many(&[r"[a-z]+", r"[A-Z]+"])?;
    /// let mut cache = re.create_cache();
    /// let mut caps = Captures::empty(re.get_nfa().group_info().clone());
    ///
    /// re.captures(&mut cache, "aABCz", &mut caps);
    /// assert!(caps.is_match());
    /// assert_eq!(Some(PatternID::must(0)), caps.pattern());
    /// // We didn't ask for any offsets, so they aren't available.
    /// assert_eq!(None, caps.get_match());
    ///
    /// re.captures(&mut cache, &"aABCz"[1..], &mut caps);
    /// assert!(caps.is_match());
    /// assert_eq!(Some(PatternID::must(1)), caps.pattern());
    /// // We didn't ask for any offsets, so they aren't available.
    /// assert_eq!(None, caps.get_match());
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    pub fn empty(group_info: GroupInfo) -> Captures {
        Captures { group_info, pid: None, slots: vec![] }
    }

    /// Returns true if and only if this capturing group represents a match.
    ///
    /// This is a convenience routine for `caps.pattern().is_some()`.
    ///
    /// # Example
    ///
    /// When using the PikeVM (for example), the lightest weight way of
    /// detecting whether a match exists is to create capturing groups that
    /// only track the ID of the pattern that match (if any):
    ///
    /// ```
    /// use regex_automata::{
    ///     nfa::thompson::pikevm::PikeVM,
    ///     util::captures::Captures,
    /// };
    ///
    /// let re = PikeVM::new(r"[a-z]+")?;
    /// let mut cache = re.create_cache();
    /// let mut caps = Captures::empty(re.get_nfa().group_info().clone());
    ///
    /// re.captures(&mut cache, "aABCz", &mut caps);
    /// assert!(caps.is_match());
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    #[inline]
    pub fn is_match(&self) -> bool {
        self.pid.is_some()
    }

    /// Returns the identifier of the pattern that matched when this
    /// capturing group represents a match. If no match was found, then this
    /// always returns `None`.
    ///
    /// This returns a pattern ID in precisely the cases in which `is_match`
    /// returns `true`. Similarly, the pattern ID returned is always the
    /// same pattern ID found in the `Match` returned by `get_match`.
    ///
    /// # Example
    ///
    /// When using the PikeVM (for example), the lightest weight way of
    /// detecting which pattern matched is to create capturing groups that only
    /// track the ID of the pattern that match (if any):
    ///
    /// ```
    /// use regex_automata::{
    ///     nfa::thompson::pikevm::PikeVM,
    ///     util::captures::Captures,
    ///     PatternID,
    /// };
    ///
    /// let re = PikeVM::new_many(&[r"[a-z]+", r"[A-Z]+"])?;
    /// let mut cache = re.create_cache();
    /// let mut caps = Captures::empty(re.get_nfa().group_info().clone());
    ///
    /// re.captures(&mut cache, "ABC", &mut caps);
    /// assert_eq!(Some(PatternID::must(1)), caps.pattern());
    /// // Recall that offsets are only available when using a non-empty
    /// // Captures value. So even though a match occurred, this returns None!
    /// assert_eq!(None, caps.get_match());
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    #[inline]
    pub fn pattern(&self) -> Option<PatternID> {
        self.pid
    }

    /// Returns the pattern ID and the span of the match, if one occurred.
    ///
    /// This always returns `None` when `Captures` was created with
    /// [`Captures::empty`], even if a match was found.
    ///
    /// If this routine returns a non-`None` value, then `is_match` is
    /// guaranteed to return `true` and `pattern` is also guaranteed to return
    /// a non-`None` value.
    ///
    /// # Example
    ///
    /// This example shows how to get the full match from a search:
    ///
    /// ```
    /// use regex_automata::{nfa::thompson::pikevm::PikeVM, Match};
    ///
    /// let re = PikeVM::new_many(&[r"[a-z]+", r"[A-Z]+"])?;
    /// let (mut cache, mut caps) = (re.create_cache(), re.create_captures());
    ///
    /// re.captures(&mut cache, "ABC", &mut caps);
    /// assert_eq!(Some(Match::must(1, 0..3)), caps.get_match());
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    #[inline]
    pub fn get_match(&self) -> Option<Match> {
        Some(Match::new(self.pattern()?, self.get_group(0)?))
    }

    /// Returns the span of a capturing group match corresponding to the group
    /// index given, only if both the overall pattern matched and the capturing
    /// group participated in that match.
    ///
    /// This returns `None` if `index` is invalid. `index` is valid if and only
    /// if it's less than [`Captures::group_len`] for the matching pattern.
    ///
    /// This always returns `None` when `Captures` was created with
    /// [`Captures::empty`], even if a match was found. This also always
    /// returns `None` for any `index > 0` when `Captures` was created with
    /// [`Captures::matches`].
    ///
    /// If this routine returns a non-`None` value, then `is_match` is
    /// guaranteed to return `true`, `pattern` is guaranteed to return a
    /// non-`None` value and `get_match` is guaranteed to return a non-`None`
    /// value.
    ///
    /// By convention, the 0th capture group will always return the same
    /// span as the span returned by `get_match`. This is because the 0th
    /// capture group always corresponds to the entirety of the pattern's
    /// match. (It is similarly always unnamed because it is implicit.) This
    /// isn't necessarily true of all regex engines. For example, one can
    /// hand-compile a [`thompson::NFA`](crate::nfa::thompson::NFA) via a
    /// [`thompson::Builder`](crate::nfa::thompson::Builder), which isn't
    /// technically forced to make the 0th capturing group always correspond to
    /// the entire match.
    ///
    /// # Example
    ///
    /// This example shows how to get the capturing groups, by index, from a
    /// match:
    ///
    /// ```
    /// # if cfg!(miri) { return Ok(()); } // miri takes too long
    /// use regex_automata::{nfa::thompson::pikevm::PikeVM, Span, Match};
    ///
    /// let re = PikeVM::new(r"^(?P<first>\pL+)\s+(?P<last>\pL+)$")?;
    /// let (mut cache, mut caps) = (re.create_cache(), re.create_captures());
    ///
    /// re.captures(&mut cache, "Bruce Springsteen", &mut caps);
    /// assert_eq!(Some(Match::must(0, 0..17)), caps.get_match());
    /// assert_eq!(Some(Span::from(0..5)), caps.get_group(1));
    /// assert_eq!(Some(Span::from(6..17)), caps.get_group(2));
    /// // Looking for a non-existent capturing group will return None:
    /// assert_eq!(None, caps.get_group(3));
    /// assert_eq!(None, caps.get_group(9944060567225171988));
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    #[inline]
    pub fn get_group(&self, index: usize) -> Option<Span> {
        let pid = self.pattern()?;
        // There's a little bit of work needed to map captures to slots in the
        // fully general case. But in the overwhelming common case of a single
        // pattern, we can just do some simple arithmetic.
        let (slot_start, slot_end) = if self.group_info().pattern_len() == 1 {
            (index.checked_mul(2)?, index.checked_mul(2)?.checked_add(1)?)
        } else {
            self.group_info().slots(pid, index)?
        };
        let start = self.slots.get(slot_start).copied()??;
        let end = self.slots.get(slot_end).copied()??;
        Some(Span { start: start.get(), end: end.get() })
    }

    /// Returns the span of a capturing group match corresponding to the group
    /// name given, only if both the overall pattern matched and the capturing
    /// group participated in that match.
    ///
    /// This returns `None` if `name` does not correspond to a valid capturing
    /// group for the pattern that matched.
    ///
    /// This always returns `None` when `Captures` was created with
    /// [`Captures::empty`], even if a match was found. This also always
    /// returns `None` for any `index > 0` when `Captures` was created with
    /// [`Captures::matches`].
    ///
    /// If this routine returns a non-`None` value, then `is_match` is
    /// guaranteed to return `true`, `pattern` is guaranteed to return a
    /// non-`None` value and `get_match` is guaranteed to return a non-`None`
    /// value.
    ///
    /// # Example
    ///
    /// This example shows how to get the capturing groups, by name, from a
    /// match:
    ///
    /// ```
    /// # if cfg!(miri) { return Ok(()); } // miri takes too long
    /// use regex_automata::{nfa::thompson::pikevm::PikeVM, Span, Match};
    ///
    /// let re = PikeVM::new(r"^(?P<first>\pL+)\s+(?P<last>\pL+)$")?;
    /// let (mut cache, mut caps) = (re.create_cache(), re.create_captures());
    ///
    /// re.captures(&mut cache, "Bruce Springsteen", &mut caps);
    /// assert_eq!(Some(Match::must(0, 0..17)), caps.get_match());
    /// assert_eq!(Some(Span::from(0..5)), caps.get_group_by_name("first"));
    /// assert_eq!(Some(Span::from(6..17)), caps.get_group_by_name("last"));
    /// // Looking for a non-existent capturing group will return None:
    /// assert_eq!(None, caps.get_group_by_name("middle"));
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    pub fn get_group_by_name(&self, name: &str) -> Option<Span> {
        let index = self.group_info().to_index(self.pattern()?, name)?;
        self.get_group(index)
    }

    /// Returns an iterator of possible spans for every capturing group in the
    /// matching pattern.
    ///
    /// If this `Captures` value does not correspond to a match, then the
    /// iterator returned yields no elements.
    ///
    /// Note that the iterator returned yields elements of type `Option<Span>`.
    /// A span is present if and only if it corresponds to a capturing group
    /// that participated in a match.
    ///
    /// # Example
    ///
    /// This example shows how to collect all capturing groups:
    ///
    /// ```
    /// # if cfg!(miri) { return Ok(()); } // miri takes too long
    /// use regex_automata::{nfa::thompson::pikevm::PikeVM, Span};
    ///
    /// let re = PikeVM::new(
    ///     // Matches first/last names, with an optional middle name.
    ///     r"^(?P<first>\pL+)\s+(?:(?P<middle>\pL+)\s+)?(?P<last>\pL+)$",
    /// )?;
    /// let (mut cache, mut caps) = (re.create_cache(), re.create_captures());
    ///
    /// re.captures(&mut cache, "Harry James Potter", &mut caps);
    /// assert!(caps.is_match());
    /// let groups: Vec<Option<Span>> = caps.iter().collect();
    /// assert_eq!(groups, vec![
    ///     Some(Span::from(0..18)),
    ///     Some(Span::from(0..5)),
    ///     Some(Span::from(6..11)),
    ///     Some(Span::from(12..18)),
    /// ]);
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    ///
    /// This example uses the same regex as the previous example, but with a
    /// haystack that omits the middle name. This results in a capturing group
    /// that is present in the elements yielded by the iterator but without a
    /// match:
    ///
    /// ```
    /// # if cfg!(miri) { return Ok(()); } // miri takes too long
    /// use regex_automata::{nfa::thompson::pikevm::PikeVM, Span};
    ///
    /// let re = PikeVM::new(
    ///     // Matches first/last names, with an optional middle name.
    ///     r"^(?P<first>\pL+)\s+(?:(?P<middle>\pL+)\s+)?(?P<last>\pL+)$",
    /// )?;
    /// let (mut cache, mut caps) = (re.create_cache(), re.create_captures());
    ///
    /// re.captures(&mut cache, "Harry Potter", &mut caps);
    /// assert!(caps.is_match());
    /// let groups: Vec<Option<Span>> = caps.iter().collect();
    /// assert_eq!(groups, vec![
    ///     Some(Span::from(0..12)),
    ///     Some(Span::from(0..5)),
    ///     None,
    ///     Some(Span::from(6..12)),
    /// ]);
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    pub fn iter(&self) -> CapturesPatternIter<'_> {
        let names = self
            .pattern()
            .map_or(GroupInfoPatternNames::empty().enumerate(), |pid| {
                self.group_info().pattern_names(pid).enumerate()
            });
        CapturesPatternIter { caps: self, names }
    }

    /// Return the total number of capturing groups for the matching pattern.
    ///
    /// If this `Captures` value does not correspond to a match, then this
    /// always returns `0`.
    ///
    /// This always returns the same number of elements yielded by
    /// [`Captures::iter`]. That is, the number includes capturing groups even
    /// if they don't participate in the match.
    ///
    /// # Example
    ///
    /// This example shows how to count the total number of capturing groups
    /// associated with a pattern. Notice that it includes groups that did not
    /// participate in a match (just like `Captures::iter` does).
    ///
    /// ```
    /// # if cfg!(miri) { return Ok(()); } // miri takes too long
    /// use regex_automata::nfa::thompson::pikevm::PikeVM;
    ///
    /// let re = PikeVM::new(
    ///     // Matches first/last names, with an optional middle name.
    ///     r"^(?P<first>\pL+)\s+(?:(?P<middle>\pL+)\s+)?(?P<last>\pL+)$",
    /// )?;
    /// let (mut cache, mut caps) = (re.create_cache(), re.create_captures());
    ///
    /// re.captures(&mut cache, "Harry Potter", &mut caps);
    /// assert_eq!(4, caps.group_len());
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    pub fn group_len(&self) -> usize {
        let pid = match self.pattern() {
            None => return 0,
            Some(pid) => pid,
        };
        self.group_info().group_len(pid)
    }

    /// Returns a reference to the underlying group info on which these
    /// captures are based.
    ///
    /// The difference between `GroupInfo` and `Captures` is that the former
    /// defines the structure of capturing groups where as the latter is what
    /// stores the actual match information. So where as `Captures` only gives
    /// you access to the current match, `GroupInfo` lets you query any
    /// information about all capturing groups, even ones for patterns that
    /// weren't involved in a match.
    ///
    /// Note that a `GroupInfo` uses reference counting internally, so it may
    /// be cloned cheaply.
    ///
    /// # Example
    ///
    /// This example shows how to get all capturing group names from the
    /// underlying `GroupInfo`. Notice that we don't even need to run a
    /// search.
    ///
    /// ```
    /// use regex_automata::{nfa::thompson::pikevm::PikeVM, PatternID};
    ///
    /// let re = PikeVM::new_many(&[
    ///     r"(?P<foo>a)",
    ///     r"(a)(b)",
    ///     r"ab",
    ///     r"(?P<bar>a)(?P<quux>a)",
    ///     r"(?P<foo>z)",
    /// ])?;
    /// let caps = re.create_captures();
    ///
    /// let expected = vec![
    ///     (PatternID::must(0), 0, None),
    ///     (PatternID::must(0), 1, Some("foo")),
    ///     (PatternID::must(1), 0, None),
    ///     (PatternID::must(1), 1, None),
    ///     (PatternID::must(1), 2, None),
    ///     (PatternID::must(2), 0, None),
    ///     (PatternID::must(3), 0, None),
    ///     (PatternID::must(3), 1, Some("bar")),
    ///     (PatternID::must(3), 2, Some("quux")),
    ///     (PatternID::must(4), 0, None),
    ///     (PatternID::must(4), 1, Some("foo")),
    /// ];
    /// // We could also just use 're.get_nfa().group_info()'.
    /// let got: Vec<(PatternID, usize, Option<&str>)> =
    ///     caps.group_info().all_names().collect();
    /// assert_eq!(expected, got);
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    pub fn group_info(&self) -> &GroupInfo {
        &self.group_info
    }

    /// Interpolates the capture references in `replacement` with the
    /// corresponding substrings in `haystack` matched by each reference. The
    /// interpolated string is returned.
    ///
    /// See the [`interpolate` module](interpolate) for documentation on the
    /// format of the replacement string.
    ///
    /// # Example
    ///
    /// This example shows how to use interpolation, and also shows how it
    /// can work with multi-pattern regexes.
    ///
    /// ```
    /// use regex_automata::{nfa::thompson::pikevm::PikeVM, PatternID};
    ///
    /// let re = PikeVM::new_many(&[
    ///     r"(?<day>[0-9]{2})-(?<month>[0-9]{2})-(?<year>[0-9]{4})",
    ///     r"(?<year>[0-9]{4})-(?<month>[0-9]{2})-(?<day>[0-9]{2})",
    /// ])?;
    /// let mut cache = re.create_cache();
    /// let mut caps = re.create_captures();
    ///
    /// let replacement = "year=$year, month=$month, day=$day";
    ///
    /// // This matches the first pattern.
    /// let hay = "On 14-03-2010, I became a Tenneessee lamb.";
    /// re.captures(&mut cache, hay, &mut caps);
    /// let result = caps.interpolate_string(hay, replacement);
    /// assert_eq!("year=2010, month=03, day=14", result);
    ///
    /// // And this matches the second pattern.
    /// let hay = "On 2010-03-14, I became a Tenneessee lamb.";
    /// re.captures(&mut cache, hay, &mut caps);
    /// let result = caps.interpolate_string(hay, replacement);
    /// assert_eq!("year=2010, month=03, day=14", result);
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    pub fn interpolate_string(
        &self,
        haystack: &str,
        replacement: &str,
    ) -> String {
        let mut dst = String::new();
        self.interpolate_string_into(haystack, replacement, &mut dst);
        dst
    }

    /// Interpolates the capture references in `replacement` with the
    /// corresponding substrings in `haystack` matched by each reference. The
    /// interpolated string is written to `dst`.
    ///
    /// See the [`interpolate` module](interpolate) for documentation on the
    /// format of the replacement string.
    ///
    /// # Example
    ///
    /// This example shows how to use interpolation, and also shows how it
    /// can work with multi-pattern regexes.
    ///
    /// ```
    /// use regex_automata::{nfa::thompson::pikevm::PikeVM, PatternID};
    ///
    /// let re = PikeVM::new_many(&[
    ///     r"(?<day>[0-9]{2})-(?<month>[0-9]{2})-(?<year>[0-9]{4})",
    ///     r"(?<year>[0-9]{4})-(?<month>[0-9]{2})-(?<day>[0-9]{2})",
    /// ])?;
    /// let mut cache = re.create_cache();
    /// let mut caps = re.create_captures();
    ///
    /// let replacement = "year=$year, month=$month, day=$day";
    ///
    /// // This matches the first pattern.
    /// let hay = "On 14-03-2010, I became a Tenneessee lamb.";
    /// re.captures(&mut cache, hay, &mut caps);
    /// let mut dst = String::new();
    /// caps.interpolate_string_into(hay, replacement, &mut dst);
    /// assert_eq!("year=2010, month=03, day=14", dst);
    ///
    /// // And this matches the second pattern.
    /// let hay = "On 2010-03-14, I became a Tenneessee lamb.";
    /// re.captures(&mut cache, hay, &mut caps);
    /// let mut dst = String::new();
    /// caps.interpolate_string_into(hay, replacement, &mut dst);
    /// assert_eq!("year=2010, month=03, day=14", dst);
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    pub fn interpolate_string_into(
        &self,
        haystack: &str,
        replacement: &str,
        dst: &mut String,
    ) {
        interpolate::string(
            replacement,
            |index, dst| {
                let span = match self.get_group(index) {
                    None => return,
                    Some(span) => span,
                };
                dst.push_str(&haystack[span]);
            },
            |name| self.group_info().to_index(self.pattern()?, name),
            dst,
        );
    }

    /// Interpolates the capture references in `replacement` with the
    /// corresponding substrings in `haystack` matched by each reference. The
    /// interpolated byte string is returned.
    ///
    /// See the [`interpolate` module](interpolate) for documentation on the
    /// format of the replacement string.
    ///
    /// # Example
    ///
    /// This example shows how to use interpolation, and also shows how it
    /// can work with multi-pattern regexes.
    ///
    /// ```
    /// use regex_automata::{nfa::thompson::pikevm::PikeVM, PatternID};
    ///
    /// let re = PikeVM::new_many(&[
    ///     r"(?<day>[0-9]{2})-(?<month>[0-9]{2})-(?<year>[0-9]{4})",
    ///     r"(?<year>[0-9]{4})-(?<month>[0-9]{2})-(?<day>[0-9]{2})",
    /// ])?;
    /// let mut cache = re.create_cache();
    /// let mut caps = re.create_captures();
    ///
    /// let replacement = b"year=$year, month=$month, day=$day";
    ///
    /// // This matches the first pattern.
    /// let hay = b"On 14-03-2010, I became a Tenneessee lamb.";
    /// re.captures(&mut cache, hay, &mut caps);
    /// let result = caps.interpolate_bytes(hay, replacement);
    /// assert_eq!(&b"year=2010, month=03, day=14"[..], result);
    ///
    /// // And this matches the second pattern.
    /// let hay = b"On 2010-03-14, I became a Tenneessee lamb.";
    /// re.captures(&mut cache, hay, &mut caps);
    /// let result = caps.interpolate_bytes(hay, replacement);
    /// assert_eq!(&b"year=2010, month=03, day=14"[..], result);
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    pub fn interpolate_bytes(
        &self,
        haystack: &[u8],
        replacement: &[u8],
    ) -> Vec<u8> {
        let mut dst = vec![];
        self.interpolate_bytes_into(haystack, replacement, &mut dst);
        dst
    }

    /// Interpolates the capture references in `replacement` with the
    /// corresponding substrings in `haystack` matched by each reference. The
    /// interpolated byte string is written to `dst`.
    ///
    /// See the [`interpolate` module](interpolate) for documentation on the
    /// format of the replacement string.
    ///
    /// # Example
    ///
    /// This example shows how to use interpolation, and also shows how it
    /// can work with multi-pattern regexes.
    ///
    /// ```
    /// use regex_automata::{nfa::thompson::pikevm::PikeVM, PatternID};
    ///
    /// let re = PikeVM::new_many(&[
    ///     r"(?<day>[0-9]{2})-(?<month>[0-9]{2})-(?<year>[0-9]{4})",
    ///     r"(?<year>[0-9]{4})-(?<month>[0-9]{2})-(?<day>[0-9]{2})",
    /// ])?;
    /// let mut cache = re.create_cache();
    /// let mut caps = re.create_captures();
    ///
    /// let replacement = b"year=$year, month=$month, day=$day";
    ///
    /// // This matches the first pattern.
    /// let hay = b"On 14-03-2010, I became a Tenneessee lamb.";
    /// re.captures(&mut cache, hay, &mut caps);
    /// let mut dst = vec![];
    /// caps.interpolate_bytes_into(hay, replacement, &mut dst);
    /// assert_eq!(&b"year=2010, month=03, day=14"[..], dst);
    ///
    /// // And this matches the second pattern.
    /// let hay = b"On 2010-03-14, I became a Tenneessee lamb.";
    /// re.captures(&mut cache, hay, &mut caps);
    /// let mut dst = vec![];
    /// caps.interpolate_bytes_into(hay, replacement, &mut dst);
    /// assert_eq!(&b"year=2010, month=03, day=14"[..], dst);
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    pub fn interpolate_bytes_into(
        &self,
        haystack: &[u8],
        replacement: &[u8],
        dst: &mut Vec<u8>,
    ) {
        interpolate::bytes(
            replacement,
            |index, dst| {
                let span = match self.get_group(index) {
                    None => return,
                    Some(span) => span,
                };
                dst.extend_from_slice(&haystack[span]);
            },
            |name| self.group_info().to_index(self.pattern()?, name),
            dst,
        );
    }

    /// This is a convenience routine for extracting the substrings
    /// corresponding to matching capture groups in the given `haystack`. The
    /// `haystack` should be the same substring used to find the match spans in
    /// this `Captures` value.
    ///
    /// This is identical to [`Captures::extract_bytes`], except it works with
    /// `&str` instead of `&[u8]`.
    ///
    /// # Panics
    ///
    /// This panics if the number of explicit matching groups in this
    /// `Captures` value is less than `N`. This also panics if this `Captures`
    /// value does not correspond to a match.
    ///
    /// Note that this does *not* panic if the number of explicit matching
    /// groups is bigger than `N`. In that case, only the first `N` matching
    /// groups are extracted.
    ///
    /// # Example
    ///
    /// ```
    /// use regex_automata::nfa::thompson::pikevm::PikeVM;
    ///
    /// let re = PikeVM::new(r"([0-9]{4})-([0-9]{2})-([0-9]{2})")?;
    /// let mut cache = re.create_cache();
    /// let mut caps = re.create_captures();
    ///
    /// let hay = "On 2010-03-14, I became a Tenneessee lamb.";
    /// re.captures(&mut cache, hay, &mut caps);
    /// assert!(caps.is_match());
    /// let (full, [year, month, day]) = caps.extract(hay);
    /// assert_eq!("2010-03-14", full);
    /// assert_eq!("2010", year);
    /// assert_eq!("03", month);
    /// assert_eq!("14", day);
    ///
    /// // We can also ask for fewer than all capture groups.
    /// let (full, [year]) = caps.extract(hay);
    /// assert_eq!("2010-03-14", full);
    /// assert_eq!("2010", year);
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    pub fn extract<'h, const N: usize>(
        &self,
        haystack: &'h str,
    ) -> (&'h str, [&'h str; N]) {
        let mut matched = self.iter().flatten();
        let whole_match = &haystack[matched.next().expect("a match")];
        let group_matches = [0; N].map(|_| {
            let sp = matched.next().expect("too few matching groups");
            &haystack[sp]
        });
        (whole_match, group_matches)
    }

    /// This is a convenience routine for extracting the substrings
    /// corresponding to matching capture groups in the given `haystack`. The
    /// `haystack` should be the same substring used to find the match spans in
    /// this `Captures` value.
    ///
    /// This is identical to [`Captures::extract`], except it works with
    /// `&[u8]` instead of `&str`.
    ///
    /// # Panics
    ///
    /// This panics if the number of explicit matching groups in this
    /// `Captures` value is less than `N`. This also panics if this `Captures`
    /// value does not correspond to a match.
    ///
    /// Note that this does *not* panic if the number of explicit matching
    /// groups is bigger than `N`. In that case, only the first `N` matching
    /// groups are extracted.
    ///
    /// # Example
    ///
    /// ```
    /// use regex_automata::nfa::thompson::pikevm::PikeVM;
    ///
    /// let re = PikeVM::new(r"([0-9]{4})-([0-9]{2})-([0-9]{2})")?;
    /// let mut cache = re.create_cache();
    /// let mut caps = re.create_captures();
    ///
    /// let hay = b"On 2010-03-14, I became a Tenneessee lamb.";
    /// re.captures(&mut cache, hay, &mut caps);
    /// assert!(caps.is_match());
    /// let (full, [year, month, day]) = caps.extract_bytes(hay);
    /// assert_eq!(b"2010-03-14", full);
    /// assert_eq!(b"2010", year);
    /// assert_eq!(b"03", month);
    /// assert_eq!(b"14", day);
    ///
    /// // We can also ask for fewer than all capture groups.
    /// let (full, [year]) = caps.extract_bytes(hay);
    /// assert_eq!(b"2010-03-14", full);
    /// assert_eq!(b"2010", year);
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    pub fn extract_bytes<'h, const N: usize>(
        &self,
        haystack: &'h [u8],
    ) -> (&'h [u8], [&'h [u8]; N]) {
        let mut matched = self.iter().flatten();
        let whole_match = &haystack[matched.next().expect("a match")];
        let group_matches = [0; N].map(|_| {
            let sp = matched.next().expect("too few matching groups");
            &haystack[sp]
        });
        (whole_match, group_matches)
    }
}

/// Lower level "slot" oriented APIs. One does not typically need to use these
/// when executing a search. They are instead mostly intended for folks that
/// are writing their own regex engine while reusing this `Captures` type.
impl Captures {
    /// Clear this `Captures` value.
    ///
    /// After clearing, all slots inside this `Captures` value will be set to
    /// `None`. Similarly, any pattern ID that it was previously associated
    /// with (for a match) is erased.
    ///
    /// It is not usually necessary to call this routine. Namely, a `Captures`
    /// value only provides high level access to the capturing groups of the
    /// pattern that matched, and only low level access to individual slots.
    /// Thus, even if slots corresponding to groups that aren't associated
    /// with the matching pattern are set, then it won't impact the higher
    /// level APIs. Namely, higher level APIs like [`Captures::get_group`] will
    /// return `None` if no pattern ID is present, even if there are spans set
    /// in the underlying slots.
    ///
    /// Thus, to "clear" a `Captures` value of a match, it is usually only
    /// necessary to call [`Captures::set_pattern`] with `None`.
    ///
    /// # Example
    ///
    /// This example shows what happens when a `Captures` value is cleared.
    ///
    /// ```
    /// # if cfg!(miri) { return Ok(()); } // miri takes too long
    /// use regex_automata::nfa::thompson::pikevm::PikeVM;
    ///
    /// let re = PikeVM::new(r"^(?P<first>\pL+)\s+(?P<last>\pL+)$")?;
    /// let (mut cache, mut caps) = (re.create_cache(), re.create_captures());
    ///
    /// re.captures(&mut cache, "Bruce Springsteen", &mut caps);
    /// assert!(caps.is_match());
    /// let slots: Vec<Option<usize>> =
    ///     caps.slots().iter().map(|s| s.map(|x| x.get())).collect();
    /// // Note that the following ordering is considered an API guarantee.
    /// assert_eq!(slots, vec![
    ///     Some(0),
    ///     Some(17),
    ///     Some(0),
    ///     Some(5),
    ///     Some(6),
    ///     Some(17),
    /// ]);
    ///
    /// // Now clear the slots. Everything is gone and it is no longer a match.
    /// caps.clear();
    /// assert!(!caps.is_match());
    /// let slots: Vec<Option<usize>> =
    ///     caps.slots().iter().map(|s| s.map(|x| x.get())).collect();
    /// assert_eq!(slots, vec![
    ///     None,
    ///     None,
    ///     None,
    ///     None,
    ///     None,
    ///     None,
    /// ]);
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    #[inline]
    pub fn clear(&mut self) {
        self.pid = None;
        for slot in self.slots.iter_mut() {
            *slot = None;
        }
    }

    /// Set the pattern on this `Captures` value.
    ///
    /// When the pattern ID is `None`, then this `Captures` value does not
    /// correspond to a match (`is_match` will return `false`). Otherwise, it
    /// corresponds to a match.
    ///
    /// This is useful in search implementations where you might want to
    /// initially call `set_pattern(None)` in order to avoid the cost of
    /// calling `clear()` if it turns out to not be necessary.
    ///
    /// # Example
    ///
    /// This example shows that `set_pattern` merely overwrites the pattern ID.
    /// It does not actually change the underlying slot values.
    ///
    /// ```
    /// # if cfg!(miri) { return Ok(()); } // miri takes too long
    /// use regex_automata::nfa::thompson::pikevm::PikeVM;
    ///
    /// let re = PikeVM::new(r"^(?P<first>\pL+)\s+(?P<last>\pL+)$")?;
    /// let (mut cache, mut caps) = (re.create_cache(), re.create_captures());
    ///
    /// re.captures(&mut cache, "Bruce Springsteen", &mut caps);
    /// assert!(caps.is_match());
    /// assert!(caps.pattern().is_some());
    /// let slots: Vec<Option<usize>> =
    ///     caps.slots().iter().map(|s| s.map(|x| x.get())).collect();
    /// // Note that the following ordering is considered an API guarantee.
    /// assert_eq!(slots, vec![
    ///     Some(0),
    ///     Some(17),
    ///     Some(0),
    ///     Some(5),
    ///     Some(6),
    ///     Some(17),
    /// ]);
    ///
    /// // Now set the pattern to None. Note that the slot values remain.
    /// caps.set_pattern(None);
    /// assert!(!caps.is_match());
    /// assert!(!caps.pattern().is_some());
    /// let slots: Vec<Option<usize>> =
    ///     caps.slots().iter().map(|s| s.map(|x| x.get())).collect();
    /// // Note that the following ordering is considered an API guarantee.
    /// assert_eq!(slots, vec![
    ///     Some(0),
    ///     Some(17),
    ///     Some(0),
    ///     Some(5),
    ///     Some(6),
    ///     Some(17),
    /// ]);
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    #[inline]
    pub fn set_pattern(&mut self, pid: Option<PatternID>) {
        self.pid = pid;
    }

    /// Returns the underlying slots, where each slot stores a single offset.
    ///
    /// Every matching capturing group generally corresponds to two slots: one
    /// slot for the starting position and another for the ending position.
    /// Typically, either both are present or neither are. (The weasel word
    /// "typically" is used here because it really depends on the regex engine
    /// implementation. Every sensible regex engine likely adheres to this
    /// invariant, and every regex engine in this crate is sensible.)
    ///
    /// Generally speaking, callers should prefer to use higher level routines
    /// like [`Captures::get_match`] or [`Captures::get_group`].
    ///
    /// An important note here is that a regex engine may not reset all of the
    /// slots to `None` values when no match occurs, or even when a match of
    /// a different pattern occurs. But this depends on how the regex engine
    /// implementation deals with slots.
    ///
    /// # Example
    ///
    /// This example shows how to get the underlying slots from a regex match.
    ///
    /// ```
    /// use regex_automata::{
    ///     nfa::thompson::pikevm::PikeVM,
    ///     util::primitives::{PatternID, NonMaxUsize},
    /// };
    ///
    /// let re = PikeVM::new_many(&[
    ///     r"[a-z]+",
    ///     r"[0-9]+",
    /// ])?;
    /// let (mut cache, mut caps) = (re.create_cache(), re.create_captures());
    ///
    /// re.captures(&mut cache, "123", &mut caps);
    /// assert_eq!(Some(PatternID::must(1)), caps.pattern());
    /// // Note that the only guarantee we have here is that slots 2 and 3
    /// // are set to correct values. The contents of the first two slots are
    /// // unspecified since the 0th pattern did not match.
    /// let expected = &[
    ///     None,
    ///     None,
    ///     NonMaxUsize::new(0),
    ///     NonMaxUsize::new(3),
    /// ];
    /// assert_eq!(expected, caps.slots());
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    #[inline]
    pub fn slots(&self) -> &[Option<NonMaxUsize>] {
        &self.slots
    }

    /// Returns the underlying slots as a mutable slice, where each slot stores
    /// a single offset.
    ///
    /// This tends to be most useful for regex engine implementations for
    /// writing offsets for matching capturing groups to slots.
    ///
    /// See [`Captures::slots`] for more information about slots.
    #[inline]
    pub fn slots_mut(&mut self) -> &mut [Option<NonMaxUsize>] {
        &mut self.slots
    }
}

impl core::fmt::Debug for Captures {
    fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
        let mut dstruct = f.debug_struct("Captures");
        dstruct.field("pid", &self.pid);
        if let Some(pid) = self.pid {
            dstruct.field("spans", &CapturesDebugMap { pid, caps: self });
        }
        dstruct.finish()
    }
}

/// A little helper type to provide a nice map-like debug representation for
/// our capturing group spans.
struct CapturesDebugMap<'a> {
    pid: PatternID,
    caps: &'a Captures,
}

impl<'a> core::fmt::Debug for CapturesDebugMap<'a> {
    fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
        struct Key<'a>(usize, Option<&'a str>);

        impl<'a> core::fmt::Debug for Key<'a> {
            fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
                write!(f, "{}", self.0)?;
                if let Some(name) = self.1 {
                    write!(f, "/{:?}", name)?;
                }
                Ok(())
            }
        }

        let mut map = f.debug_map();
        let names = self.caps.group_info().pattern_names(self.pid);
        for (group_index, maybe_name) in names.enumerate() {
            let key = Key(group_index, maybe_name);
            match self.caps.get_group(group_index) {
                None => map.entry(&key, &None::<()>),
                Some(span) => map.entry(&key, &span),
            };
        }
        map.finish()
    }
}

/// An iterator over all capturing groups in a `Captures` value.
///
/// This iterator includes capturing groups that did not participate in a
/// match. See the [`Captures::iter`] method documentation for more details
/// and examples.
///
/// The lifetime parameter `'a` refers to the lifetime of the underlying
/// `Captures` value.
#[derive(Clone, Debug)]
pub struct CapturesPatternIter<'a> {
    caps: &'a Captures,
    names: core::iter::Enumerate<GroupInfoPatternNames<'a>>,
}

impl<'a> Iterator for CapturesPatternIter<'a> {
    type Item = Option<Span>;

    fn next(&mut self) -> Option<Option<Span>> {
        let (group_index, _) = self.names.next()?;
        Some(self.caps.get_group(group_index))
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        self.names.size_hint()
    }

    fn count(self) -> usize {
        self.names.count()
    }
}

impl<'a> ExactSizeIterator for CapturesPatternIter<'a> {}
impl<'a> core::iter::FusedIterator for CapturesPatternIter<'a> {}

/// Represents information about capturing groups in a compiled regex.
///
/// The information encapsulated by this type consists of the following. For
/// each pattern:
///
/// * A map from every capture group name to its corresponding capture group
/// index.
/// * A map from every capture group index to its corresponding capture group
/// name.
/// * A map from capture group index to its corresponding slot index. A slot
/// refers to one half of a capturing group. That is, a capture slot is either
/// the start or end of a capturing group. A slot is usually the mechanism
/// by which a regex engine records offsets for each capturing group during a
/// search.
///
/// A `GroupInfo` uses reference counting internally and is thus cheap to
/// clone.
///
/// # Mapping from capture groups to slots
///
/// One of the main responsibilities of a `GroupInfo` is to build a mapping
/// from `(PatternID, u32)` (where the `u32` is a capture index) to something
/// called a "slot." As mentioned above, a slot refers to one half of a
/// capturing group. Both combined provide the start and end offsets of
/// a capturing group that participated in a match.
///
/// **The mapping between group indices and slots is an API guarantee.** That
/// is, the mapping won't change within a semver compatible release.
///
/// Slots exist primarily because this is a convenient mechanism by which
/// regex engines report group offsets at search time. For example, the
/// [`nfa::thompson::State::Capture`](crate::nfa::thompson::State::Capture)
/// NFA state includes the slot index. When a regex engine transitions through
/// this state, it will likely use the slot index to write the current haystack
/// offset to some region of memory. When a match is found, those slots are
/// then reported to the caller, typically via a convenient abstraction like a
/// [`Captures`] value.
///
/// Because this crate provides first class support for multi-pattern regexes,
/// and because of some performance related reasons, the mapping between
/// capturing groups and slots is a little complex. However, in the case of a
/// single pattern, the mapping can be described very simply: for all capture
/// group indices `i`, its corresponding slots are at `i * 2` and `i * 2 + 1`.
/// Notice that the pattern ID isn't involved at all here, because it only
/// applies to a single-pattern regex, it is therefore always `0`.
///
/// In the multi-pattern case, the mapping is a bit more complicated. To talk
/// about it, we must define what we mean by "implicit" vs "explicit"
/// capturing groups:
///
/// * An **implicit** capturing group refers to the capturing group that is
/// present for every pattern automatically, and corresponds to the overall
/// match of a pattern. Every pattern has precisely one implicit capturing
/// group. It is always unnamed and it always corresponds to the capture group
/// index `0`.
/// * An **explicit** capturing group refers to any capturing group that
/// appears in the concrete syntax of the pattern. (Or, if an NFA was hand
/// built without any concrete syntax, it refers to any capturing group with an
/// index greater than `0`.)
///
/// Some examples:
///
/// * `\w+` has one implicit capturing group and zero explicit capturing
/// groups.
/// * `(\w+)` has one implicit group and one explicit group.
/// * `foo(\d+)(?:\pL+)(\d+)` has one implicit group and two explicit groups.
///
/// Turning back to the slot mapping, we can now state it as follows:
///
/// * Given a pattern ID `pid`, the slots for its implicit group are always
/// at `pid * 2` and `pid * 2 + 1`.
/// * Given a pattern ID `0`, the slots for its explicit groups start
/// at `group_info.pattern_len() * 2`.
/// * Given a pattern ID `pid > 0`, the slots for its explicit groups start
/// immediately following where the slots for the explicit groups of `pid - 1`
/// end.
///
/// In particular, while there is a concrete formula one can use to determine
/// where the slots for the implicit group of any pattern are, there is no
/// general formula for determining where the slots for explicit capturing
/// groups are. This is because each pattern can contain a different number
/// of groups.
///
/// The intended way of getting the slots for a particular capturing group
/// (whether implicit or explicit) is via the [`GroupInfo::slot`] or
/// [`GroupInfo::slots`] method.
///
/// See below for a concrete example of how capturing groups get mapped to
/// slots.
///
/// # Example
///
/// This example shows how to build a new `GroupInfo` and query it for
/// information.
///
/// ```
/// use regex_automata::util::{captures::GroupInfo, primitives::PatternID};
///
/// let info = GroupInfo::new(vec![
///     vec![None, Some("foo")],
///     vec![None],
///     vec![None, None, None, Some("bar"), None],
///     vec![None, None, Some("foo")],
/// ])?;
/// // The number of patterns being tracked.
/// assert_eq!(4, info.pattern_len());
/// // We can query the number of groups for any pattern.
/// assert_eq!(2, info.group_len(PatternID::must(0)));
/// assert_eq!(1, info.group_len(PatternID::must(1)));
/// assert_eq!(5, info.group_len(PatternID::must(2)));
/// assert_eq!(3, info.group_len(PatternID::must(3)));
/// // An invalid pattern always has zero groups.
/// assert_eq!(0, info.group_len(PatternID::must(999)));
/// // 2 slots per group
/// assert_eq!(22, info.slot_len());
///
/// // We can map a group index for a particular pattern to its name, if
/// // one exists.
/// assert_eq!(Some("foo"), info.to_name(PatternID::must(3), 2));
/// assert_eq!(None, info.to_name(PatternID::must(2), 4));
/// // Or map a name to its group index.
/// assert_eq!(Some(1), info.to_index(PatternID::must(0), "foo"));
/// assert_eq!(Some(2), info.to_index(PatternID::must(3), "foo"));
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// # Example: mapping from capture groups to slots
///
/// This example shows the specific mapping from capture group indices for
/// each pattern to their corresponding slots. The slot values shown in this
/// example are considered an API guarantee.
///
/// ```
/// use regex_automata::util::{captures::GroupInfo, primitives::PatternID};
///
/// let info = GroupInfo::new(vec![
///     vec![None, Some("foo")],
///     vec![None],
///     vec![None, None, None, Some("bar"), None],
///     vec![None, None, Some("foo")],
/// ])?;
///
/// // We first show the slots for each pattern's implicit group.
/// assert_eq!(Some((0, 1)), info.slots(PatternID::must(0), 0));
/// assert_eq!(Some((2, 3)), info.slots(PatternID::must(1), 0));
/// assert_eq!(Some((4, 5)), info.slots(PatternID::must(2), 0));
/// assert_eq!(Some((6, 7)), info.slots(PatternID::must(3), 0));
///
/// // And now we show the slots for each pattern's explicit group.
/// assert_eq!(Some((8, 9)), info.slots(PatternID::must(0), 1));
/// assert_eq!(Some((10, 11)), info.slots(PatternID::must(2), 1));
/// assert_eq!(Some((12, 13)), info.slots(PatternID::must(2), 2));
/// assert_eq!(Some((14, 15)), info.slots(PatternID::must(2), 3));
/// assert_eq!(Some((16, 17)), info.slots(PatternID::must(2), 4));
/// assert_eq!(Some((18, 19)), info.slots(PatternID::must(3), 1));
/// assert_eq!(Some((20, 21)), info.slots(PatternID::must(3), 2));
///
/// // Asking for the slots for an invalid pattern ID or even for an invalid
/// // group index for a specific pattern will return None. So for example,
/// // you're guaranteed to not get the slots for a different pattern than the
/// // one requested.
/// assert_eq!(None, info.slots(PatternID::must(5), 0));
/// assert_eq!(None, info.slots(PatternID::must(1), 1));
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[derive(Clone, Debug, Default)]
pub struct GroupInfo(Arc<GroupInfoInner>);

impl GroupInfo {
    /// Creates a new group info from a sequence of patterns, where each
    /// sequence of patterns yields a sequence of possible group names. The
    /// index of each pattern in the sequence corresponds to its `PatternID`,
    /// and the index of each group in each pattern's sequence corresponds to
    /// its corresponding group index.
    ///
    /// While this constructor is very generic and therefore perhaps hard to
    /// chew on, an example of a valid concrete type that can be passed to
    /// this constructor is `Vec<Vec<Option<String>>>`. The outer `Vec`
    /// corresponds to the patterns, i.e., one `Vec<Option<String>>` per
    /// pattern. The inner `Vec` corresponds to the capturing groups for
    /// each pattern. The `Option<String>` corresponds to the name of the
    /// capturing group, if present.
    ///
    /// It is legal to pass an empty iterator to this constructor. It will
    /// return an empty group info with zero slots. An empty group info is
    /// useful for cases where you have no patterns or for cases where slots
    /// aren't being used at all (e.g., for most DFAs in this crate).
    ///
    /// # Errors
    ///
    /// This constructor returns an error if the given capturing groups are
    /// invalid in some way. Those reasons include, but are not necessarily
    /// limited to:
    ///
    /// * Too many patterns (i.e., `PatternID` would overflow).
    /// * Too many capturing groups (e.g., `u32` would overflow).
    /// * A pattern is given that has no capturing groups. (All patterns must
    /// have at least an implicit capturing group at index `0`.)
    /// * The capturing group at index `0` has a name. It must be unnamed.
    /// * There are duplicate capturing group names within the same pattern.
    /// (Multiple capturing groups with the same name may exist, but they
    /// must be in different patterns.)
    ///
    /// An example below shows how to trigger some of the above error
    /// conditions.
    ///
    /// # Example
    ///
    /// This example shows how to build a new `GroupInfo` and query it for
    /// information.
    ///
    /// ```
    /// use regex_automata::util::captures::GroupInfo;
    ///
    /// let info = GroupInfo::new(vec![
    ///     vec![None, Some("foo")],
    ///     vec![None],
    ///     vec![None, None, None, Some("bar"), None],
    ///     vec![None, None, Some("foo")],
    /// ])?;
    /// // The number of patterns being tracked.
    /// assert_eq!(4, info.pattern_len());
    /// // 2 slots per group
    /// assert_eq!(22, info.slot_len());
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    ///
    /// # Example: empty `GroupInfo`
    ///
    /// This example shows how to build a new `GroupInfo` and query it for
    /// information.
    ///
    /// ```
    /// use regex_automata::util::captures::GroupInfo;
    ///
    /// let info = GroupInfo::empty();
    /// // Everything is zero.
    /// assert_eq!(0, info.pattern_len());
    /// assert_eq!(0, info.slot_len());
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    ///
    /// # Example: error conditions
    ///
    /// This example shows how to provoke some of the ways in which building
    /// a `GroupInfo` can fail.
    ///
    /// ```
    /// use regex_automata::util::captures::GroupInfo;
    ///
    /// // Either the group info is empty, or all patterns must have at least
    /// // one capturing group.
    /// assert!(GroupInfo::new(vec![
    ///     vec![None, Some("a")], // ok
    ///     vec![None], // ok
    ///     vec![], // not ok
    /// ]).is_err());
    /// // Note that building an empty group info is OK.
    /// assert!(GroupInfo::new(Vec::<Vec<Option<String>>>::new()).is_ok());
    ///
    /// // The first group in each pattern must correspond to an implicit
    /// // anonymous group. i.e., One that is not named. By convention, this
    /// // group corresponds to the overall match of a regex. Every other group
    /// // in a pattern is explicit and optional.
    /// assert!(GroupInfo::new(vec![vec![Some("foo")]]).is_err());
    ///
    /// // There must not be duplicate group names within the same pattern.
    /// assert!(GroupInfo::new(vec![
    ///     vec![None, Some("foo"), Some("foo")],
    /// ]).is_err());
    /// // But duplicate names across distinct patterns is OK.
    /// assert!(GroupInfo::new(vec![
    ///     vec![None, Some("foo")],
    ///     vec![None, Some("foo")],
    /// ]).is_ok());
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    ///
    /// There are other ways for building a `GroupInfo` to fail but are
    /// difficult to show. For example, if the number of patterns given would
    /// overflow `PatternID`.
    pub fn new<P, G, N>(pattern_groups: P) -> Result<GroupInfo, GroupInfoError>
    where
        P: IntoIterator<Item = G>,
        G: IntoIterator<Item = Option<N>>,
        N: AsRef<str>,
    {
        let mut group_info = GroupInfoInner {
            slot_ranges: vec![],
            name_to_index: vec![],
            index_to_name: vec![],
            memory_extra: 0,
        };
        for (pattern_index, groups) in pattern_groups.into_iter().enumerate() {
            // If we can't convert the pattern index to an ID, then the caller
            // tried to build capture info for too many patterns.
            let pid = PatternID::new(pattern_index)
                .map_err(GroupInfoError::too_many_patterns)?;

            let mut groups_iter = groups.into_iter().enumerate();
            match groups_iter.next() {
                None => return Err(GroupInfoError::missing_groups(pid)),
                Some((_, Some(_))) => {
                    return Err(GroupInfoError::first_must_be_unnamed(pid))
                }
                Some((_, None)) => {}
            }
            group_info.add_first_group(pid);
            // Now iterate over the rest, which correspond to all of the
            // (conventionally) explicit capture groups in a regex pattern.
            for (group_index, maybe_name) in groups_iter {
                // Just like for patterns, if the group index can't be
                // converted to a "small" index, then the caller has given too
                // many groups for a particular pattern.
                let group = SmallIndex::new(group_index).map_err(|_| {
                    GroupInfoError::too_many_groups(pid, group_index)
                })?;
                group_info.add_explicit_group(pid, group, maybe_name)?;
            }
        }
        group_info.fixup_slot_ranges()?;
        Ok(GroupInfo(Arc::new(group_info)))
    }

    /// This creates an empty `GroupInfo`.
    ///
    /// This is a convenience routine for calling `GroupInfo::new` with an
    /// iterator that yields no elements.
    ///
    /// # Example
    ///
    /// This example shows how to build a new empty `GroupInfo` and query it
    /// for information.
    ///
    /// ```
    /// use regex_automata::util::captures::GroupInfo;
    ///
    /// let info = GroupInfo::empty();
    /// // Everything is zero.
    /// assert_eq!(0, info.pattern_len());
    /// assert_eq!(0, info.all_group_len());
    /// assert_eq!(0, info.slot_len());
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    pub fn empty() -> GroupInfo {
        GroupInfo::new(core::iter::empty::<[Option<&str>; 0]>())
            .expect("empty group info is always valid")
    }

    /// Return the capture group index corresponding to the given name in the
    /// given pattern. If no such capture group name exists in the given
    /// pattern, then this returns `None`.
    ///
    /// If the given pattern ID is invalid, then this returns `None`.
    ///
    /// This also returns `None` for all inputs if these captures are empty
    /// (e.g., built from an empty [`GroupInfo`]). To check whether captures
    /// are are present for a specific pattern, use [`GroupInfo::group_len`].
    ///
    /// # Example
    ///
    /// This example shows how to find the capture index for the given pattern
    /// and group name.
    ///
    /// Remember that capture indices are relative to the pattern, such that
    /// the same capture index value may refer to different capturing groups
    /// for distinct patterns.
    ///
    /// ```
    /// # if cfg!(miri) { return Ok(()); } // miri takes too long
    /// use regex_automata::{nfa::thompson::NFA, PatternID};
    ///
    /// let (pid0, pid1) = (PatternID::must(0), PatternID::must(1));
    ///
    /// let nfa = NFA::new_many(&[
    ///     r"a(?P<quux>\w+)z(?P<foo>\s+)",
    ///     r"a(?P<foo>\d+)z",
    /// ])?;
    /// let groups = nfa.group_info();
    /// assert_eq!(Some(2), groups.to_index(pid0, "foo"));
    /// // Recall that capture index 0 is always unnamed and refers to the
    /// // entire pattern. So the first capturing group present in the pattern
    /// // itself always starts at index 1.
    /// assert_eq!(Some(1), groups.to_index(pid1, "foo"));
    ///
    /// // And if a name does not exist for a particular pattern, None is
    /// // returned.
    /// assert!(groups.to_index(pid0, "quux").is_some());
    /// assert!(groups.to_index(pid1, "quux").is_none());
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    #[inline]
    pub fn to_index(&self, pid: PatternID, name: &str) -> Option<usize> {
        let indices = self.0.name_to_index.get(pid.as_usize())?;
        indices.get(name).cloned().map(|i| i.as_usize())
    }

    /// Return the capture name for the given index and given pattern. If the
    /// corresponding group does not have a name, then this returns `None`.
    ///
    /// If the pattern ID is invalid, then this returns `None`.
    ///
    /// If the group index is invalid for the given pattern, then this returns
    /// `None`. A group `index` is valid for a pattern `pid` in an `nfa` if and
    /// only if `index < nfa.pattern_capture_len(pid)`.
    ///
    /// This also returns `None` for all inputs if these captures are empty
    /// (e.g., built from an empty [`GroupInfo`]). To check whether captures
    /// are are present for a specific pattern, use [`GroupInfo::group_len`].
    ///
    /// # Example
    ///
    /// This example shows how to find the capture group name for the given
    /// pattern and group index.
    ///
    /// ```
    /// # if cfg!(miri) { return Ok(()); } // miri takes too long
    /// use regex_automata::{nfa::thompson::NFA, PatternID};
    ///
    /// let (pid0, pid1) = (PatternID::must(0), PatternID::must(1));
    ///
    /// let nfa = NFA::new_many(&[
    ///     r"a(?P<foo>\w+)z(\s+)x(\d+)",
    ///     r"a(\d+)z(?P<foo>\s+)",
    /// ])?;
    /// let groups = nfa.group_info();
    /// assert_eq!(None, groups.to_name(pid0, 0));
    /// assert_eq!(Some("foo"), groups.to_name(pid0, 1));
    /// assert_eq!(None, groups.to_name(pid0, 2));
    /// assert_eq!(None, groups.to_name(pid0, 3));
    ///
    /// assert_eq!(None, groups.to_name(pid1, 0));
    /// assert_eq!(None, groups.to_name(pid1, 1));
    /// assert_eq!(Some("foo"), groups.to_name(pid1, 2));
    /// // '3' is not a valid capture index for the second pattern.
    /// assert_eq!(None, groups.to_name(pid1, 3));
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    #[inline]
    pub fn to_name(&self, pid: PatternID, group_index: usize) -> Option<&str> {
        let pattern_names = self.0.index_to_name.get(pid.as_usize())?;
        pattern_names.get(group_index)?.as_deref()
    }

    /// Return an iterator of all capture groups and their names (if present)
    /// for a particular pattern.
    ///
    /// If the given pattern ID is invalid or if this `GroupInfo` is empty,
    /// then the iterator yields no elements.
    ///
    /// The number of elements yielded by this iterator is always equal to
    /// the result of calling [`GroupInfo::group_len`] with the same
    /// `PatternID`.
    ///
    /// # Example
    ///
    /// This example shows how to get a list of all capture group names for
    /// a particular pattern.
    ///
    /// ```
    /// use regex_automata::{nfa::thompson::NFA, PatternID};
    ///
    /// let nfa = NFA::new(r"(a)(?P<foo>b)(c)(d)(?P<bar>e)")?;
    /// // The first is the implicit group that is always unnammed. The next
    /// // 5 groups are the explicit groups found in the concrete syntax above.
    /// let expected = vec![None, None, Some("foo"), None, None, Some("bar")];
    /// let got: Vec<Option<&str>> =
    ///     nfa.group_info().pattern_names(PatternID::ZERO).collect();
    /// assert_eq!(expected, got);
    ///
    /// // Using an invalid pattern ID will result in nothing yielded.
    /// let got = nfa.group_info().pattern_names(PatternID::must(999)).count();
    /// assert_eq!(0, got);
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    #[inline]
    pub fn pattern_names(&self, pid: PatternID) -> GroupInfoPatternNames<'_> {
        GroupInfoPatternNames {
            it: self
                .0
                .index_to_name
                .get(pid.as_usize())
                .map(|indices| indices.iter())
                .unwrap_or([].iter()),
        }
    }

    /// Return an iterator of all capture groups for all patterns supported by
    /// this `GroupInfo`. Each item yielded is a triple of the group's pattern
    /// ID, index in the pattern and the group's name, if present.
    ///
    /// # Example
    ///
    /// This example shows how to get a list of all capture groups found in
    /// one NFA, potentially spanning multiple patterns.
    ///
    /// ```
    /// use regex_automata::{nfa::thompson::NFA, PatternID};
    ///
    /// let nfa = NFA::new_many(&[
    ///     r"(?P<foo>a)",
    ///     r"a",
    ///     r"(a)",
    /// ])?;
    /// let expected = vec![
    ///     (PatternID::must(0), 0, None),
    ///     (PatternID::must(0), 1, Some("foo")),
    ///     (PatternID::must(1), 0, None),
    ///     (PatternID::must(2), 0, None),
    ///     (PatternID::must(2), 1, None),
    /// ];
    /// let got: Vec<(PatternID, usize, Option<&str>)> =
    ///     nfa.group_info().all_names().collect();
    /// assert_eq!(expected, got);
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    ///
    /// Unlike other capturing group related routines, this routine doesn't
    /// panic even if captures aren't enabled on this NFA:
    ///
    /// ```
    /// use regex_automata::nfa::thompson::NFA;
    ///
    /// let nfa = NFA::compiler()
    ///     .configure(NFA::config().captures(false))
    ///     .build_many(&[
    ///         r"(?P<foo>a)",
    ///         r"a",
    ///         r"(a)",
    ///     ])?;
    /// // When captures aren't enabled, there's nothing to return.
    /// assert_eq!(0, nfa.group_info().all_names().count());
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    #[inline]
    pub fn all_names(&self) -> GroupInfoAllNames<'_> {
        GroupInfoAllNames {
            group_info: self,
            pids: PatternID::iter(self.pattern_len()),
            current_pid: None,
            names: None,
        }
    }

    /// Returns the starting and ending slot corresponding to the given
    /// capturing group for the given pattern. The ending slot is always one
    /// more than the starting slot returned.
    ///
    /// Note that this is like [`GroupInfo::slot`], except that it also returns
    /// the ending slot value for convenience.
    ///
    /// If either the pattern ID or the capture index is invalid, then this
    /// returns None.
    ///
    /// # Example
    ///
    /// This example shows that the starting slots for the first capturing
    /// group of each pattern are distinct.
    ///
    /// ```
    /// use regex_automata::{nfa::thompson::NFA, PatternID};
    ///
    /// let nfa = NFA::new_many(&["a", "b"])?;
    /// assert_ne!(
    ///     nfa.group_info().slots(PatternID::must(0), 0),
    ///     nfa.group_info().slots(PatternID::must(1), 0),
    /// );
    ///
    /// // Also, the start and end slot values are never equivalent.
    /// let (start, end) = nfa.group_info().slots(PatternID::ZERO, 0).unwrap();
    /// assert_ne!(start, end);
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    #[inline]
    pub fn slots(
        &self,
        pid: PatternID,
        group_index: usize,
    ) -> Option<(usize, usize)> {
        // Since 'slot' only even returns valid starting slots, we know that
        // there must also be an end slot and that end slot is always one more
        // than the start slot.
        self.slot(pid, group_index).map(|start| (start, start + 1))
    }

    /// Returns the starting slot corresponding to the given capturing group
    /// for the given pattern. The ending slot is always one more than the
    /// value returned.
    ///
    /// If either the pattern ID or the capture index is invalid, then this
    /// returns None.
    ///
    /// # Example
    ///
    /// This example shows that the starting slots for the first capturing
    /// group of each pattern are distinct.
    ///
    /// ```
    /// use regex_automata::{nfa::thompson::NFA, PatternID};
    ///
    /// let nfa = NFA::new_many(&["a", "b"])?;
    /// assert_ne!(
    ///     nfa.group_info().slot(PatternID::must(0), 0),
    ///     nfa.group_info().slot(PatternID::must(1), 0),
    /// );
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    #[inline]
    pub fn slot(&self, pid: PatternID, group_index: usize) -> Option<usize> {
        if group_index >= self.group_len(pid) {
            return None;
        }
        // At this point, we know that 'pid' refers to a real pattern and that
        // 'group_index' refers to a real group. We therefore also know that
        // the pattern and group can be combined to return a correct slot.
        // That's why we don't need to use checked arithmetic below.
        if group_index == 0 {
            Some(pid.as_usize() * 2)
        } else {
            // As above, we don't need to check that our slot is less than the
            // end of our range since we already know the group index is a
            // valid index for the given pattern.
            let (start, _) = self.0.slot_ranges[pid];
            Some(start.as_usize() + ((group_index - 1) * 2))
        }
    }

    /// Returns the total number of patterns in this `GroupInfo`.
    ///
    /// This may return zero if the `GroupInfo` was constructed with no
    /// patterns.
    ///
    /// This is guaranteed to be no bigger than [`PatternID::LIMIT`] because
    /// `GroupInfo` construction will fail if too many patterns are added.
    ///
    /// # Example
    ///
    /// ```
    /// use regex_automata::nfa::thompson::NFA;
    ///
    /// let nfa = NFA::new_many(&["[0-9]+", "[a-z]+", "[A-Z]+"])?;
    /// assert_eq!(3, nfa.group_info().pattern_len());
    ///
    /// let nfa = NFA::never_match();
    /// assert_eq!(0, nfa.group_info().pattern_len());
    ///
    /// let nfa = NFA::always_match();
    /// assert_eq!(1, nfa.group_info().pattern_len());
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    #[inline]
    pub fn pattern_len(&self) -> usize {
        self.0.pattern_len()
    }

    /// Return the number of capture groups in a pattern.
    ///
    /// If the pattern ID is invalid, then this returns `0`.
    ///
    /// # Example
    ///
    /// This example shows how the values returned by this routine may vary
    /// for different patterns and NFA configurations.
    ///
    /// ```
    /// use regex_automata::{nfa::thompson::NFA, PatternID};
    ///
    /// let nfa = NFA::new(r"(a)(b)(c)")?;
    /// // There are 3 explicit groups in the pattern's concrete syntax and
    /// // 1 unnamed and implicit group spanning the entire pattern.
    /// assert_eq!(4, nfa.group_info().group_len(PatternID::ZERO));
    ///
    /// let nfa = NFA::new(r"abc")?;
    /// // There is just the unnamed implicit group.
    /// assert_eq!(1, nfa.group_info().group_len(PatternID::ZERO));
    ///
    /// let nfa = NFA::compiler()
    ///     .configure(NFA::config().captures(false))
    ///     .build(r"abc")?;
    /// // We disabled capturing groups, so there are none.
    /// assert_eq!(0, nfa.group_info().group_len(PatternID::ZERO));
    ///
    /// let nfa = NFA::compiler()
    ///     .configure(NFA::config().captures(false))
    ///     .build(r"(a)(b)(c)")?;
    /// // We disabled capturing groups, so there are none, even if there are
    /// // explicit groups in the concrete syntax.
    /// assert_eq!(0, nfa.group_info().group_len(PatternID::ZERO));
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    #[inline]
    pub fn group_len(&self, pid: PatternID) -> usize {
        self.0.group_len(pid)
    }

    /// Return the total number of capture groups across all patterns.
    ///
    /// This includes implicit groups that represent the entire match of a
    /// pattern.
    ///
    /// # Example
    ///
    /// This example shows how the values returned by this routine may vary
    /// for different patterns and NFA configurations.
    ///
    /// ```
    /// use regex_automata::{nfa::thompson::NFA, PatternID};
    ///
    /// let nfa = NFA::new(r"(a)(b)(c)")?;
    /// // There are 3 explicit groups in the pattern's concrete syntax and
    /// // 1 unnamed and implicit group spanning the entire pattern.
    /// assert_eq!(4, nfa.group_info().all_group_len());
    ///
    /// let nfa = NFA::new(r"abc")?;
    /// // There is just the unnamed implicit group.
    /// assert_eq!(1, nfa.group_info().all_group_len());
    ///
    /// let nfa = NFA::new_many(&["(a)", "b", "(c)"])?;
    /// // Each pattern has one implicit groups, and two
    /// // patterns have one explicit group each.
    /// assert_eq!(5, nfa.group_info().all_group_len());
    ///
    /// let nfa = NFA::compiler()
    ///     .configure(NFA::config().captures(false))
    ///     .build(r"abc")?;
    /// // We disabled capturing groups, so there are none.
    /// assert_eq!(0, nfa.group_info().all_group_len());
    ///
    /// let nfa = NFA::compiler()
    ///     .configure(NFA::config().captures(false))
    ///     .build(r"(a)(b)(c)")?;
    /// // We disabled capturing groups, so there are none, even if there are
    /// // explicit groups in the concrete syntax.
    /// assert_eq!(0, nfa.group_info().group_len(PatternID::ZERO));
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    #[inline]
    pub fn all_group_len(&self) -> usize {
        self.slot_len() / 2
    }

    /// Returns the total number of slots in this `GroupInfo` across all
    /// patterns.
    ///
    /// The total number of slots is always twice the total number of capturing
    /// groups, including both implicit and explicit groups.
    ///
    /// # Example
    ///
    /// This example shows the relationship between the number of capturing
    /// groups and slots.
    ///
    /// ```
    /// use regex_automata::util::captures::GroupInfo;
    ///
    /// // There are 11 total groups here.
    /// let info = GroupInfo::new(vec![
    ///     vec![None, Some("foo")],
    ///     vec![None],
    ///     vec![None, None, None, Some("bar"), None],
    ///     vec![None, None, Some("foo")],
    /// ])?;
    /// // 2 slots per group gives us 11*2=22 slots.
    /// assert_eq!(22, info.slot_len());
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    #[inline]
    pub fn slot_len(&self) -> usize {
        self.0.small_slot_len().as_usize()
    }

    /// Returns the total number of slots for implicit capturing groups.
    ///
    /// This is like [`GroupInfo::slot_len`], except it doesn't include the
    /// explicit slots for each pattern. Since there are always exactly 2
    /// implicit slots for each pattern, the number of implicit slots is always
    /// equal to twice the number of patterns.
    ///
    /// # Example
    ///
    /// This example shows the relationship between the number of capturing
    /// groups, implicit slots and explicit slots.
    ///
    /// ```
    /// use regex_automata::util::captures::GroupInfo;
    ///
    /// // There are 11 total groups here.
    /// let info = GroupInfo::new(vec![vec![None, Some("foo"), Some("bar")]])?;
    /// // 2 slots per group gives us 11*2=22 slots.
    /// assert_eq!(6, info.slot_len());
    /// // 2 implicit slots per pattern gives us 2 implicit slots since there
    /// // is 1 pattern.
    /// assert_eq!(2, info.implicit_slot_len());
    /// // 2 explicit capturing groups gives us 2*2=4 explicit slots.
    /// assert_eq!(4, info.explicit_slot_len());
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    #[inline]
    pub fn implicit_slot_len(&self) -> usize {
        self.pattern_len() * 2
    }

    /// Returns the total number of slots for explicit capturing groups.
    ///
    /// This is like [`GroupInfo::slot_len`], except it doesn't include the
    /// implicit slots for each pattern. (There are always 2 implicit slots for
    /// each pattern.)
    ///
    /// For a non-empty `GroupInfo`, it is always the case that `slot_len` is
    /// strictly greater than `explicit_slot_len`. For an empty `GroupInfo`,
    /// both the total number of slots and the number of explicit slots is
    /// `0`.
    ///
    /// # Example
    ///
    /// This example shows the relationship between the number of capturing
    /// groups, implicit slots and explicit slots.
    ///
    /// ```
    /// use regex_automata::util::captures::GroupInfo;
    ///
    /// // There are 11 total groups here.
    /// let info = GroupInfo::new(vec![vec![None, Some("foo"), Some("bar")]])?;
    /// // 2 slots per group gives us 11*2=22 slots.
    /// assert_eq!(6, info.slot_len());
    /// // 2 implicit slots per pattern gives us 2 implicit slots since there
    /// // is 1 pattern.
    /// assert_eq!(2, info.implicit_slot_len());
    /// // 2 explicit capturing groups gives us 2*2=4 explicit slots.
    /// assert_eq!(4, info.explicit_slot_len());
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    #[inline]
    pub fn explicit_slot_len(&self) -> usize {
        self.slot_len().saturating_sub(self.implicit_slot_len())
    }

    /// Returns the memory usage, in bytes, of this `GroupInfo`.
    ///
    /// This does **not** include the stack size used up by this `GroupInfo`.
    /// To compute that, use `std::mem::size_of::<GroupInfo>()`.
    #[inline]
    pub fn memory_usage(&self) -> usize {
        use core::mem::size_of as s;

        s::<GroupInfoInner>()
            + self.0.slot_ranges.len() * s::<(SmallIndex, SmallIndex)>()
            + self.0.name_to_index.len() * s::<CaptureNameMap>()
            + self.0.index_to_name.len() * s::<Vec<Option<Arc<str>>>>()
            + self.0.memory_extra
    }
}

/// A map from capture group name to its corresponding capture group index.
///
/// This type is actually wrapped inside a Vec indexed by pattern ID on a
/// `GroupInfo`, since multiple patterns may have the same capture group name.
/// That is, each pattern gets its own namespace of capture group names.
///
/// Perhaps a more memory efficient representation would be
/// HashMap<(PatternID, Arc<str>), usize>, but this makes it difficult to look
/// up a capture index by name without producing a `Arc<str>`, which requires
/// an allocation. To fix this, I think we'd need to define our own unsized
/// type or something? Anyway, I didn't give this much thought since it
/// probably doesn't matter much in the grand scheme of things. But it did
/// stand out to me as mildly wasteful.
#[cfg(feature = "std")]
type CaptureNameMap = std::collections::HashMap<Arc<str>, SmallIndex>;
#[cfg(not(feature = "std"))]
type CaptureNameMap = alloc::collections::BTreeMap<Arc<str>, SmallIndex>;

/// The inner guts of `GroupInfo`. This type only exists so that it can
/// be wrapped in an `Arc` to make `GroupInfo` reference counted.
#[derive(Debug, Default)]
struct GroupInfoInner {
    slot_ranges: Vec<(SmallIndex, SmallIndex)>,
    name_to_index: Vec<CaptureNameMap>,
    index_to_name: Vec<Vec<Option<Arc<str>>>>,
    memory_extra: usize,
}

impl GroupInfoInner {
    /// This adds the first unnamed group for the given pattern ID. The given
    /// pattern ID must be zero if this is the first time this method is
    /// called, or must be exactly one more than the pattern ID supplied to the
    /// previous call to this method. (This method panics if this rule is
    /// violated.)
    ///
    /// This can be thought of as initializing the GroupInfo state for the
    /// given pattern and closing off the state for any previous pattern.
    fn add_first_group(&mut self, pid: PatternID) {
        assert_eq!(pid.as_usize(), self.slot_ranges.len());
        assert_eq!(pid.as_usize(), self.name_to_index.len());
        assert_eq!(pid.as_usize(), self.index_to_name.len());
        // This is the start of our slots for the explicit capturing groups.
        // Note that since the slots for the 0th group for every pattern appear
        // before any slots for the nth group (where n > 0) in any pattern, we
        // will have to fix up the slot ranges once we know how many patterns
        // we've added capture groups for.
        let slot_start = self.small_slot_len();
        self.slot_ranges.push((slot_start, slot_start));
        self.name_to_index.push(CaptureNameMap::new());
        self.index_to_name.push(vec![None]);
        self.memory_extra += core::mem::size_of::<Option<Arc<str>>>();
    }

    /// Add an explicit capturing group for the given pattern with the given
    /// index. If the group has a name, then that must be given as well.
    ///
    /// Note that every capturing group except for the first or zeroth group is
    /// explicit.
    ///
    /// This returns an error if adding this group would result in overflowing
    /// slot indices or if a capturing group with the same name for this
    /// pattern has already been added.
    fn add_explicit_group<N: AsRef<str>>(
        &mut self,
        pid: PatternID,
        group: SmallIndex,
        maybe_name: Option<N>,
    ) -> Result<(), GroupInfoError> {
        // We also need to check that the slot index generated for
        // this group is also valid. Although, this is a little weird
        // because we offset these indices below, at which point, we'll
        // have to recheck them. Gosh this is annoying. Note that
        // the '+2' below is OK because 'end' is guaranteed to be less
        // than isize::MAX.
        let end = &mut self.slot_ranges[pid].1;
        *end = SmallIndex::new(end.as_usize() + 2).map_err(|_| {
            GroupInfoError::too_many_groups(pid, group.as_usize())
        })?;
        if let Some(name) = maybe_name {
            let name = Arc::<str>::from(name.as_ref());
            if self.name_to_index[pid].contains_key(&*name) {
                return Err(GroupInfoError::duplicate(pid, &name));
            }
            let len = name.len();
            self.name_to_index[pid].insert(Arc::clone(&name), group);
            self.index_to_name[pid].push(Some(name));
            // Adds the memory used by the Arc<str> in both maps.
            self.memory_extra +=
                2 * (len + core::mem::size_of::<Option<Arc<str>>>());
            // And also the value entry for the 'name_to_index' map.
            // This is probably an underestimate for 'name_to_index' since
            // hashmaps/btrees likely have some non-zero overhead, but we
            // assume here that they have zero overhead.
            self.memory_extra += core::mem::size_of::<SmallIndex>();
        } else {
            self.index_to_name[pid].push(None);
            self.memory_extra += core::mem::size_of::<Option<Arc<str>>>();
        }
        // This is a sanity assert that checks that our group index
        // is in line with the number of groups added so far for this
        // pattern.
        assert_eq!(group.one_more(), self.group_len(pid));
        // And is also in line with the 'index_to_name' map.
        assert_eq!(group.one_more(), self.index_to_name[pid].len());
        Ok(())
    }

    /// This corrects the slot ranges to account for the slots corresponding
    /// to the zeroth group of each pattern. That is, every slot range is
    /// offset by 'pattern_len() * 2', since each pattern uses two slots to
    /// represent the zeroth group.
    fn fixup_slot_ranges(&mut self) -> Result<(), GroupInfoError> {
        use crate::util::primitives::IteratorIndexExt;
        // Since we know number of patterns fits in PatternID and
        // PatternID::MAX < isize::MAX, it follows that multiplying by 2 will
        // never overflow usize.
        let offset = self.pattern_len().checked_mul(2).unwrap();
        for (pid, &mut (ref mut start, ref mut end)) in
            self.slot_ranges.iter_mut().with_pattern_ids()
        {
            let group_len = 1 + ((end.as_usize() - start.as_usize()) / 2);
            let new_end = match end.as_usize().checked_add(offset) {
                Some(new_end) => new_end,
                None => {
                    return Err(GroupInfoError::too_many_groups(
                        pid, group_len,
                    ))
                }
            };
            *end = SmallIndex::new(new_end).map_err(|_| {
                GroupInfoError::too_many_groups(pid, group_len)
            })?;
            // Since start <= end, if end is valid then start must be too.
            *start = SmallIndex::new(start.as_usize() + offset).unwrap();
        }
        Ok(())
    }

    /// Return the total number of patterns represented by this capture slot
    /// info.
    fn pattern_len(&self) -> usize {
        self.slot_ranges.len()
    }

    /// Return the total number of capturing groups for the given pattern. If
    /// the given pattern isn't valid for this capture slot info, then 0 is
    /// returned.
    fn group_len(&self, pid: PatternID) -> usize {
        let (start, end) = match self.slot_ranges.get(pid.as_usize()) {
            None => return 0,
            Some(range) => range,
        };
        // The difference between any two SmallIndex values always fits in a
        // usize since we know that SmallIndex::MAX <= isize::MAX-1. We also
        // know that start<=end by construction and that the number of groups
        // never exceeds SmallIndex and thus never overflows usize.
        1 + ((end.as_usize() - start.as_usize()) / 2)
    }

    /// Return the total number of slots in this capture slot info as a
    /// "small index."
    fn small_slot_len(&self) -> SmallIndex {
        // Since slots are allocated in order of pattern (starting at 0) and
        // then in order of capture group, it follows that the number of slots
        // is the end of the range of slots for the last pattern. This is
        // true even when the last pattern has no capturing groups, since
        // 'slot_ranges' will still represent it explicitly with an empty
        // range.
        self.slot_ranges.last().map_or(SmallIndex::ZERO, |&(_, end)| end)
    }
}

/// An error that may occur when building a `GroupInfo`.
///
/// Building a `GroupInfo` does a variety of checks to make sure the
/// capturing groups satisfy a number of invariants. This includes, but is not
/// limited to, ensuring that the first capturing group is unnamed and that
/// there are no duplicate capture groups for a specific pattern.
#[derive(Clone, Debug)]
pub struct GroupInfoError {
    kind: GroupInfoErrorKind,
}

/// The kind of error that occurs when building a `GroupInfo` fails.
///
/// We keep this un-exported because it's not clear how useful it is to
/// export it.
#[derive(Clone, Debug)]
enum GroupInfoErrorKind {
    /// This occurs when too many patterns have been added. i.e., It would
    /// otherwise overflow a `PatternID`.
    TooManyPatterns { err: PatternIDError },
    /// This occurs when too many capturing groups have been added for a
    /// particular pattern.
    TooManyGroups {
        /// The ID of the pattern that had too many groups.
        pattern: PatternID,
        /// The minimum number of groups that the caller has tried to add for
        /// a pattern.
        minimum: usize,
    },
    /// An error that occurs when a pattern has no capture groups. Either the
    /// group info must be empty, or all patterns must have at least one group
    /// (corresponding to the unnamed group for the entire pattern).
    MissingGroups {
        /// The ID of the pattern that had no capturing groups.
        pattern: PatternID,
    },
    /// An error that occurs when one tries to provide a name for the capture
    /// group at index 0. This capturing group must currently always be
    /// unnamed.
    FirstMustBeUnnamed {
        /// The ID of the pattern that was found to have a named first
        /// capturing group.
        pattern: PatternID,
    },
    /// An error that occurs when duplicate capture group names for the same
    /// pattern are added.
    ///
    /// NOTE: At time of writing, this error can never occur if you're using
    /// regex-syntax, since the parser itself will reject patterns with
    /// duplicate capture group names. This error can only occur when the
    /// builder is used to hand construct NFAs.
    Duplicate {
        /// The pattern in which the duplicate capture group name was found.
        pattern: PatternID,
        /// The duplicate name.
        name: String,
    },
}

impl GroupInfoError {
    fn too_many_patterns(err: PatternIDError) -> GroupInfoError {
        GroupInfoError { kind: GroupInfoErrorKind::TooManyPatterns { err } }
    }

    fn too_many_groups(pattern: PatternID, minimum: usize) -> GroupInfoError {
        GroupInfoError {
            kind: GroupInfoErrorKind::TooManyGroups { pattern, minimum },
        }
    }

    fn missing_groups(pattern: PatternID) -> GroupInfoError {
        GroupInfoError { kind: GroupInfoErrorKind::MissingGroups { pattern } }
    }

    fn first_must_be_unnamed(pattern: PatternID) -> GroupInfoError {
        GroupInfoError {
            kind: GroupInfoErrorKind::FirstMustBeUnnamed { pattern },
        }
    }

    fn duplicate(pattern: PatternID, name: &str) -> GroupInfoError {
        GroupInfoError {
            kind: GroupInfoErrorKind::Duplicate {
                pattern,
                name: String::from(name),
            },
        }
    }
}

#[cfg(feature = "std")]
impl std::error::Error for GroupInfoError {
    fn source(&self) -> Option<&(dyn std::error::Error + 'static)> {
        match self.kind {
            GroupInfoErrorKind::TooManyPatterns { .. }
            | GroupInfoErrorKind::TooManyGroups { .. }
            | GroupInfoErrorKind::MissingGroups { .. }
            | GroupInfoErrorKind::FirstMustBeUnnamed { .. }
            | GroupInfoErrorKind::Duplicate { .. } => None,
        }
    }
}

impl core::fmt::Display for GroupInfoError {
    fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
        use self::GroupInfoErrorKind::*;

        match self.kind {
            TooManyPatterns { ref err } => {
                write!(f, "too many patterns to build capture info: {}", err)
            }
            TooManyGroups { pattern, minimum } => {
                write!(
                    f,
                    "too many capture groups (at least {}) were \
                     found for pattern {}",
                    minimum,
                    pattern.as_usize()
                )
            }
            MissingGroups { pattern } => write!(
                f,
                "no capturing groups found for pattern {} \
                 (either all patterns have zero groups or all patterns have \
                  at least one group)",
                pattern.as_usize(),
            ),
            FirstMustBeUnnamed { pattern } => write!(
                f,
                "first capture group (at index 0) for pattern {} has a name \
                 (it must be unnamed)",
                pattern.as_usize(),
            ),
            Duplicate { pattern, ref name } => write!(
                f,
                "duplicate capture group name '{}' found for pattern {}",
                name,
                pattern.as_usize(),
            ),
        }
    }
}

/// An iterator over capturing groups and their names for a specific pattern.
///
/// This iterator is created by [`GroupInfo::pattern_names`].
///
/// The lifetime parameter `'a` refers to the lifetime of the `GroupInfo`
/// from which this iterator was created.
#[derive(Clone, Debug)]
pub struct GroupInfoPatternNames<'a> {
    it: core::slice::Iter<'a, Option<Arc<str>>>,
}

impl GroupInfoPatternNames<'static> {
    fn empty() -> GroupInfoPatternNames<'static> {
        GroupInfoPatternNames { it: [].iter() }
    }
}

impl<'a> Iterator for GroupInfoPatternNames<'a> {
    type Item = Option<&'a str>;

    fn next(&mut self) -> Option<Option<&'a str>> {
        self.it.next().map(|x| x.as_deref())
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        self.it.size_hint()
    }

    fn count(self) -> usize {
        self.it.count()
    }
}

impl<'a> ExactSizeIterator for GroupInfoPatternNames<'a> {}
impl<'a> core::iter::FusedIterator for GroupInfoPatternNames<'a> {}

/// An iterator over capturing groups and their names for a `GroupInfo`.
///
/// This iterator is created by [`GroupInfo::all_names`].
///
/// The lifetime parameter `'a` refers to the lifetime of the `GroupInfo`
/// from which this iterator was created.
#[derive(Debug)]
pub struct GroupInfoAllNames<'a> {
    group_info: &'a GroupInfo,
    pids: PatternIDIter,
    current_pid: Option<PatternID>,
    names: Option<core::iter::Enumerate<GroupInfoPatternNames<'a>>>,
}

impl<'a> Iterator for GroupInfoAllNames<'a> {
    type Item = (PatternID, usize, Option<&'a str>);

    fn next(&mut self) -> Option<(PatternID, usize, Option<&'a str>)> {
        // If the group info has no captures, then we never have anything
        // to yield. We need to consider this case explicitly (at time of
        // writing) because 'pattern_capture_names' will panic if captures
        // aren't enabled.
        if self.group_info.0.index_to_name.is_empty() {
            return None;
        }
        if self.current_pid.is_none() {
            self.current_pid = Some(self.pids.next()?);
        }
        let pid = self.current_pid.unwrap();
        if self.names.is_none() {
            self.names = Some(self.group_info.pattern_names(pid).enumerate());
        }
        let (group_index, name) = match self.names.as_mut().unwrap().next() {
            Some((group_index, name)) => (group_index, name),
            None => {
                self.current_pid = None;
                self.names = None;
                return self.next();
            }
        };
        Some((pid, group_index, name))
    }
}